
AceDroid: Normalizing Diverse Android Access
Control Checks for Inconsistency Detection

Yousra Aafer*, Jianjun Huang*, Yi Sun*, Xiangyu Zhang*, Ninghui Li* and Chen Tian†

*Purdue University
†Futurewei Technologies

{yaafer, huang427, sun624}@purdue.edu, {xyzhang, ninghui}@cs.purdue.edu, Chen.Tian@huawei.com

Abstract—The Android framework has raised increased secu-
rity concerns with regards to its access control enforcement. Par-
ticularly, existing research efforts successfully demonstrate that
framework security checks are not always consistent across app-
accessible APIs. However, existing efforts fall short in addressing
peculiarities that characterize the complex Android access control
and the diversity introduced by the heavy vendor customization.
In this paper, we develop a new analysis framework AceDroid
that models Android access control in a path-sensitive manner
and normalizes diverse checks to a canonical form. We applied
our proposed modeling to perform inconsistency analysis for 12
images. Our tool proved to be quite effective, enabling to detect
a significant number of inconsistencies introduced by various
vendors and to suppress substantial false alarms. Through inves-
tigating the results, we uncovered high impact attacks enabling
to write a key logger, send premium sms messages, bypass user
restrictions, perform a major denial of services and other critical
operations.

I. INTRODUCTION

Over the near-decade since its introduction in 2008, the
Android operating system has been receiving an unprecedented
success, overshadowing the market share of other competing
mobile operating systems. According to [6], on average 1.5
million Android devices are being activated every day. How-
ever, this stunning success does not come at no cost. The
number of identified vulnerabilities at various Android layers
has soared in the recent years.

Of particular interest are the framework vulnerabilities
which can allow attackers to easily access sensitive and
privileged resources without proper access control. In fact,
the Android framework has raised increased security concerns
with regards to its access control enforcement. Several research
works have questioned the effectiveness and consistency of the
complex Android framework access control and demonstrated
its weaknesses with detected vulnerabilities [33], [8]. The
difficulty of determining if critical resources are sufficiently
protected lies in the lack of an almighty oracle to determine
the access control needed for a given resource. Therefore, a
popular approximate solution is to compare the access control

enforced across multiple instances of the same resource and
report inconsistencies as potential vulnerabilities. For instance,
Kratos [33] compares the set of explicit security checks (i.e.,
permissions, UIDs, package names and thread status) in multi-
ple APIs leading to the same resource within the same image.
DroidDiff [8] compares the security configurations employed
by the different framework releases to detect vulnerabilities.

However, the simple modeling of access control in existing
techniques [33], [8] does not reflect the nature of the problem
and hence can hardly meet the challenges imposed by the
increasing complexity of frameworks and the large number of
vendor custimizations. First, most access control checks are
essentially just conditional statements. There are often many
different ways of composing the access control conditional
statements for a given resource as long as they provide the
same level of protection to the resource. These versions are not
only syntactically different, but also semantically different in
many cases (e.g., invoking different APIs). This is particularly
true for vendor customizations. Developers from different
vendors tend to choose diverse ways to implement equivalent
protection for a resource. For instance, to check if a calling
app is running with system privilege, the developer might
compare its UID with the System UID (i.e., 1000), compare its
signature with the ”android” package signature, or compare its
shared user id with ”android.uid.system”. In addition to API
calls that are explicitly related to access control, developers
may use local variables and flag variables, whose relations to
access control are implicit, further compounding the situation.
Second, the access control to a resource may require multiple
checks. Most existing techniques do not model the relations
of these checks, but rather consider the entire set of checks as
the demanded protection. However in practice, these checks
are conjoined and/or disjoined in various fashions dictated by
implementation. Such relations need to be precisely modeled
in order to have legitimate comparison of access control. As
such, a simple approach as that in Kratos [33], which collects
and compares the set of explicit invocations to access control
APIs in a path-insensitive fashion, does not model the essence
of the problem and hence may miss vulnerabilities and produce
many false positives (Section VI-F).

In this paper, we propose a normalization technique for
access control checks. It identifies diverse security checks
through comprehensive modeling. It further normalizes these
checks and their correlations to a canonical form so that the
different forms of access control checks that denote the same
meaning can be correctly recognized. Particularly, we classify
all the access control related framework modules and classes,

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23121
www.ndss-symposium.org

which contain properties that may be used in access control
checks, to two main categories: the app-specific checks and
user-specific checks. The former checks if the app that tries
to access the resource has the needed credentials whereas the
latter determines if the user of the app that tries to access the
resource has a certain role (e.g., a primary user or a guest user).
We define a small number of canonical values for each aspect.
Any access control check can be normalized to one of these
canonical values. For instance, checks by invoking different
APIs and checks with syntactic differences may be normalized
to the same value and hence considered equivalent. Through
program analysis, disjunctions and conjunctions of security
checks lead to the corresponding operations on canonical
values so that program semantics can be faithfully modeled.
At the end, our analysis produces a very concise and precise
canonical security condition for each access to a sensitive
resource. The conditions can be easily compared within a
(framework) image or across different images.

We compared normalized access control for common re-
sources in/across 12 images, including customized ones (by
Samsung, Sony, HTC and LG) and running Android versions
5.0.1 to 7.0. Our analysis led to the discovery of a minimum
of 73 unique true positive access control inconsistencies. To
prove that our detected inconsistencies are security-critical, we
picked 27 instances from the images that we had the physical
device and carried out planned attacks targeting to exploit
the vulnerabilities. Our results are alarming; we were able
to exploit them through high impact attacks, allowing us to
write a key logger and even to inject new touches in some LG
devices, sending premium SMS messages and bypassing user
restrictions on Samsung S6 and S7 Edge, injecting hard key
events on Sony Xperia XA, disallowing SD Card mounting
and wifi enabling on HTC devices, etc. We have filed security
reports to the corresponding vendors. So far, LG, Samsung
and Sony have all reproduced more than 20 of our reported
vulnerabilities. Particularly, LG has classified two as Critical
security level, while Samsung has classified three as Medium.
Due to the lack of the corresponding physical devices, we have
not confirmed the remaining cases with real attacks.

Our technique not only enables comparing access control
across different framework images that cannot be achieved
by existing works, due to their lack of support of detecting
equivalent protection with diverse implementation, but also
substantially improves the results of comparing access control
within an image. We compared with Kratos, the state-of-the-
art inconsistency detection framework in its original setting.
Our technique has substantially improved the results of Kratos.
Specifically, since AceDroid can model much more access
control features and peculiarities, it detects on average 28
actual inconsistencies per image, whereas the simulated Kratos
detects on average 16. Besides, our access control normal-
ization has helped us suppress a substantial number of false
positives. Due to the diverse security checks introduced by
vendor customization, if we simply extend Kratos’s approach
to handle cross-image analysis, the detection will lead to
a tremendous number of false positives (on average, 229
instances per image). Thanks to our proposed normalization,
we are able to reduce this number to 13 instances per image
(on average).

Contributions. The scientific contributions of the paper are

outlined below:

• We provide a systematic categorization of access
controls employed by the Android framework. We
propose a path-sensitive modeling and normalization
technique for access control checks.

• We develop a new analysis framework for incon-
sistency detection. We devise several approaches to
improving precision in comparing vendor customized
frameworks to reveal access control discrepancies.

• Our analysis uncovered high impact exploitable incon-
sistencies.

II. MOTIVATION

Different from access control in regular kernels (e.g, Linux
Kernel), Android framework access control features diversity,
namely, there are many different ways to achieve the same level
of protection. Some of them are even implicit, implemented
by comparisons with local variables and flag variables, which
are not much distinguishable from other conditional statements
that have nothing to do with access control. Framework devel-
opers, especially vendor customization developers, do not have
any gold standard to implement appropriate access control.
Instead, they tend to compose their own version based on their
personal preferences and understanding. As a result, access
control implementation tends to be ad-hoc and error-prone. As
mentioned earlier, comparing multiple access control instances
of a same resource is the most important method to identify
framework access control vulnerabilities. However, the diver-
sity in implementation renders such comparison largely in-
effective. Next, we use an example to illustrate such diversity,
explain how the-state-of-art fails to handle it and how our
technique works.

Diversity Caused by Different Implementations and Path-
Sensitivity. Consider the two simplified code snippets (Figure
1) extracted from Samsung S6 Edge (6.0.1), both allowing
to install a package (leading to the same sink). As shown in
the code, the two APIs enforce different access control based
on information related to the calling app / user. While the
API installPackageAsUser() enforces multiple checks
along the path to the sink, installPackageForMDM()
enforces a subset of the same checks. A simplified flow of
the multiple paths is depicted in Figure 2. As illustrated, to
reach the sink from the API installPackageAsUser(),
the calling app first needs to hold the system permission
INSTALL_PACKAGE. Second, it needs to satisfy one of
the checks aiming to make sure that the caller is privi-
leged enough to install apps for other users. Specifically,
the calling app needs to belong to either the SYSTEM_UID
1000 or ROOT_UID 0, or hold either one of the two
system permissions INTERACT_ACROSS_USERS_FULL or
INTERACT_ACROSS_USERS. Finally, the API enforces
a user restriction DISALLOW_INSTALL_APPS to verify
whether the calling user is restricted from installing apps.

As illustrated on the same figure,
installPackageForMDM() enforces a more concise
access control; a SYSTEM_UID check and a user restriction
DISALLOW_INSTALL_APPS along the path to the same
sink.

2

Listing 1. Simplified Code Snippet for installPackageAsUser ()
1 public void installPackageAsUser(..., int userId){
2 enforceCallingOrSelfPermission(INSTALL_PACKAGE);
3 uid = Binder.getCallingUid();
4 ...
5 if (uid != 1000 && uid != 0){
6 try{enforceCallingOrSelfPermission(

INTERACT_ACROSS_USERS_FULL);
7 }catch(SecurityException se){
8 enforceCallingOrSelfPermission(INTERACT_ACROSS_USERS);
9 }

10 }
11
12 if(UserManager.getUserRestrictions(userId).getBoolean(

DISALLOW_INSTALL_APPS, false)) return;
13 Message msg = mHandler.obtainMessage(INIT_COPY);
14 msg.obj = new InstallParams(...);
15 mHandler.sendMessage(msg);
16 }

Listing 2. Simplified Code snippet for installPackageForMDM()
1 public void installPackageForMDM(..., int userId){
2 if (Binder.getCallingUid() != 1000) throw new

SecurityException("Unauthorized acccess only system is
allowed");

3 if(UserManager.getUserRestrictions(userId).getBoolean(
DISALLOW_INSTALL_APPS, false)) return;

4 ...
5 Message msg = mHandler.obtainMessage(INIT_COPY);
6 msg.obj = new InstallParams(...);
7 mHandler.sendMessage(msg);
8 }

sink

sink

Fig. 1. Two APIs allowing to install a package on Samsung S6 Edge (6.0.1)

UID 0UID 1000

installPackageAsUser

sink

System permission = INSTALL_PACKAGE

System

permission=

INTERACT_...

System permission =

INTERACT_..FULL

User Restriction =

DISALLOW_INSTALL_APPS

installPackageForMDM

UID 1000

User Restriction =

DISALLOW_INSTALL_APPS

3rd Party App

Fig. 2. Two paths allowing to install a package on Samsung S6 Edge

While the checks are syntactically different, their imposed
protection is actually semantically equivalent from the per-
spective of a third-party app. A third-party app cannot obtain
any of the UIDs enforced by the two APIs, nor can it hold the
enforced system level permissions. Thus, this specific syntactic
inconsistency is actually not exploitable by a third party app.

Kratos’s Solution. Next, let us consider how the state-of-
art tool Kratos [33] would handle this problem. Kratos does
not reason about relations among access control checks (e.g.,
disjunction and conjunctions). It unions all the security checks
from the entry point to the sink and considers the resulted
set the security condition of the sink. It then compares these
conditions across multiple instances of the same resource.
Furthermore, Kratos only models a number of explicit security

checks such as checks through permission APIs, UID and
package name comparison. This is largely fine for in-image
analysis on earlier AOSP images (less complex) for which
Kratos was designed, because the security checks in those
images are relatively simple and uniform. However, with
newer features integrated into AOSP and more sophisticated
functionalities added by customization parties, the framework
includes very diverse security checks, such as checks on users
(i.e. owner or guest, current or inactive), processes and package
properties, app status (i.e., foreground or background), etc.
Moreover, conjunctions and disjunctions are commonly used
as well. The design of Kratos can hardly meet these challenges.

For the above example, Kratos determines the security
condition for installPackageAsUser is {permission
=INSTALL_PACKAGE,UID=1000,UID=0,permission
= INTERACT_ACROSS_USERS_FULL, permission=
INTERACT_ACROSS_USERS}. Observe that it unions
most checks in the function body without modeling their
correlations. Furthermore, it misses the UserRestriction
= DISALLOW_INSTALL_APPS check because it does not
model the user aspect. It will similarly determine the security
condition for installPackageForMDM is {UID=1000}.
Kratos will thus recognize these two APIs as inconsistent
based on the syntactic differences of the two. We argue this
is not an appropriate way to conduct inconsistency detection
as the security checks imply a semantic equivalence from the
perspective of a third party app, and thus cannot be exploited.

As we will show in our evaluation, the inability to model
and normalize the semantics of security checks has led to a
large number of false positives and false negatives for Kratos.
Note that false negatives occur as some access control related
comparisons are not modeled.

A plausible solution is to make the analysis path-sensitive
such that the conjunctive and disjunctive relations can be
modeled. For instance, we could derive the conditions for
the individual program paths for installPackageAsUser
as permission= INSTALL_PACKAGE ∧ UID=1000
∧ UserRestriction=DISALLOW_INSTALL_APPS (for
the left-most path in Figure 2), and so on. However, comparing
individual program paths across versions leads to combinato-
rial explosion and hence hardly scales. Furthermore, without
normalization, there would be many paths that have different
checks even though they enforce the same level of protection.

Our Solution. We propose a path-sensitive normalization tech-
nique that extracts and normalizes security checks to canonical
values, which may be conjoined and/or disjoined following
the program semantics. As such, we can derive a canonical
condition value for each sensitive resource access. Comparison
across accesses (that may be even from substantially different
framework customizations) becomes both concise and precise
after the canonicalization. Specifically, a canonical security
condition consists of two orthogonal aspects, the app aspect
and the user aspect. The former denotes the security enforce-
ment for the calling app and the latter denotes the enforcement
for the user (e.g., primary user or guest). Each aspect has
a small number of canonical values, which is much smaller
than the possible syntactic forms of the security checks. Each
check is normalized to one of these canonical values. For
instance, permission=INSTALL_PACKAGE, UID=1000,

3

UID=0 and permission=INTERACT.._FULL are all nor-
malized to a canonical value System to denote they all imply
system privilege. In contrast, permission=INTERNET or
permission= BLUETOOTH are normalized to a canonical
value normal.

These canonical values can be conjoined and
disjoined. For instance, the four program paths in
installPackageAsUser in Figure 2 denote disjunctive
relation. Our analysis can strictly follow the program
semantics and perform the corresponding operation on the
canonical values. The disjunction of two canonical values
yields the weaker value. Intuitively, the protection enforced by
multiple paths is equivalent to the weakest protection enforced
by any of them. For example, a disjunction of System and
Normal yields Normal. In contract, the protection enforced by
conjoined conditions is equivalent to the strongest protection
enforced by any them; e.g., a conjunction of System and
Normal yields to System.

At the end, we have the same overall canonical con-
dition for the two APIs installPackageAsUser and
installPackageForMDM as App := [System]∧User :=
[Restriction = DISALLOW INSTALL APPS]. Note
that it precisely captures the meaning of the protections. Recall
that Kratos would report it as inconsistency due to the lack of
normalization.

We develop a program analysis to automatically extract
security checks and perform normalization. The analysis is
sophisticated such that it can also handle implicit checks
who themselves do not seem to be security related, e.g., if
(x==10), but serve the functionalities of security checks.
In our experiment, the analysis is applied to 12 complex
frameworks and customizations that correspond to average
977030 LOC per-image.

Diversity Caused by Non-Standard Checks. Besides the tra-
ditional permission and UID checks, the framework developers
(especially for custom frameworks) might rely on non-standard
security features to enforce access control. For example, the
package flags, signature and shared user ID might all be used
to infer the privilege of the caller. A failure to account for
such non-standard checks would lead to missing important
inconsistencies.

Figure 3 demonstrates an example of an exploitable
inconsistency that would go undetected if non-standards
checks are not considered during analysis (e.g., as in Kratos).
The figure depicts simplified code snippets of the API
DirEncryptService.getSDCardEncryptionPref()
across two Samsung device models. As shown, while Samsung
Tab S 8.4 allows retrieving stored encryption preferences
without any security checks, Samsung S6 Edge permits this
operation only to platform signed apps. The API first retrieves
the signatures of the calling package and that of the android
platform based on the calling app’s UID (line 6) and system
process PID (line 7), respectively. It then compares the two
signatures (line 8) and allows accessing the stored encryption
preferences only if they are identical.

To address this, we have identified numerous features that
are related to access control by inspecting central services
responsible for maintaining information about installed apps,

Listing 3. Simplified Code from Samsung Tab S 8.4
1 public SDCardEncryptionPolicies getSDCardEncryptionPrefs(){
2 final long i = Binder.clearCallingIdentity();
3 ..
4 restorePrefs = this.mDep.restorePrefs();
5 Binder.restoreCallingIdentity(i);
6 return restorePrefs;

Listing 4. Simplified Code from Samsung S6 Edge
1 public SDCardEncryptionPolicies getSDCardEncryptionPrefs(){
2 final long i = Binder.clearCallingIdentity();
3 ..
4 restorePrefs = this.mDep.restorePrefs();
5 Binder.restoreCallingIdentity(i);
6 Signature[] appSig =

getPackageSettings(Binder.getCallingUid()).signatures;
7 Signature[] platformSig =

getPackageSettings(Process.myUid()).signatures;
8 if (compareSignatures(platformSig, appSig) == 0)
9 return restorePrefs;

10 else return null;

sink

sink

Fig. 3. DirEncryptService.getSDCardEncryptionPrefs() across two Samsung
models

users and running processes. More details are discussed in
(Section III).

III. ANDROID ACCESS CONTROL MODELING

In this section, we introduce our systematic modeling and
normalization of Android access control.

A. Uncovering Access Control Criteria.

Android is a layered operating system with its app
and framework layer built with Java sitting on top
of a set of C libraries and the Linux Kernel. At the
app layer are third party and system apps, preloaded
by the vendors and other customization parties. The
Android framework provides many high-level system
services (e.g. LocationManagerService and
ConnectivityService) implementing essential
functionalities, and communicating with the Linux Kernel.
Android system services execute in system processes and
expose their privileged functionalities via a set of well-defined
interfaces that are accessible by other apps and services
through the Binder IPC.

Upon receiving a Binder transaction (i.e., invocation of
an exposed API), a system service determines the identity of
the caller to allow / deny access to the underlying resource.
Prominently, the Binder class defines the following three APIs
allowing to retrieve the caller identity:

1 public class Binder implements IBinder {
2 public static final native int getCallingPid();
3 public static final native int getCallingUid();
4 public static final UserHandle getCallingUserHandle() {
5 return

UserHandle.of(UserHandle.getUserId(getCallingUid()));}

The caller’s PID and Linux UID can be used to uniquely
identify the app process that sent the current transaction while
the caller’s UserId can be used to identify the user who
initiated the transaction. It should be noted that the UserId
is distinct from the calling app’s UID in that it reflects the
actual user of the device, which has multiple apps under it,
each with their own UID.

4

TABLE I. ANDROID ACCESS CONTROL MODELING
Category Perspective Security Feature of Caller Example of Usages

App-Specific

Privilege Check

UID Comparison with a Privileged UID
PID Comparison with a Privileged PID

Permission Calling app has a permission
Package Name Comparison with constant String
Process Name Comparison with constant String

Shared User ID Comparison with constant String
Signature Comparison with a signature of another app

Flags Comparison with SYSTEM FLAG

Ownership Check Calling App UID Comparison with UID of input parameter
Package Name Comparison with input parameter

Status Check PID / Process Flags Comparison with running PIDs and has a IMPORTANCE FOREGROUND

User-Specific

Privilege Check
User Id Comparison with a privileged User Id (e.g. 0)

Flags (User Type) Comparison with FLAG PRIMARY , FLAG GUEST
FLAG RESTRICTED, FLAG ADMIN

Ownership Check User Id Comparison with an input parameter
Status Check User Id Comparison with current user
Restrictions Restriction Name Calling user has a restriction

While the essence of Android access control is to employ
these 3 identifiers to enforce app-specific and/or user-specific
permissions, the implementation of the access control checks
is much more diverse than simple equivalence checks of these
identifiers. This is because there are a large number of features
that are associated with these identifiers that can be used as
their delegators in access control checks. Therefore, we have to
identify, model and normalize all these access control checks
in various forms in order to perform comparison.

All the central Android services responsible for
managing app and user data and pertinent runtime
information may contain features that can be used
in access control. Therefore, we have to consider
and model all of them, including 3 services: the
PackageManagerService, UserManagerService
and ActivityManagerService and 7 classes: Package
Info, PackageSetting, SharedUserSetting,
ApplicationInfo, UserHandle, UserInfo, and
RunningAppProcessInfo. The criterion to determine
if a feature is related to access control is whether it has
association with one of the aforementioned three identifiers
(e.g., package name can be retrieved with app UID). Note
that these central Android services rarely change across
framework versions and customizations, and hence serve
as an ideal common basis for normalization. We observe
some recent customizations occasionally use vendor added
services in access control (e.g., LG’s IMdm and Samsung’s
EnterpriseDeviceManager which enforce additional
restrictions based on a custom user policy). They can be
nonetheless modeled and normalized. However due to the
small number of such instances, we leave them to our future
work. We propose a classification of the access control
related features in these services and classes, as shown in
Table I. The classification is dictated by our threat model.
In the following, we explain our threat model and then the
classification/normalization.

Threat Model. We formally state our assumptions about
the calling entity and the corresponding threat model, as
follows: 1 a malicious third-party app aiming to exploit an
inconsistency to perform a privileged operation with no/weaker
requirements; 2 a malicious user aiming to affect other
users and/or bypass imposed restrictions. In other words,
access control checks using different features are considered
equivalent if they allow/disallow the same set of behaviors
from third-party apps and users.

Resource

owner?

Privileged?

Current?

Has Restriction?

Resource

owner?

Privileged?

Current?

Private

Sink

Fig. 4. Android Access Control Perspectives

Categorization of Android Access Control. At the highest
level (the first column in Table I), we propose to classify all
Android access control checks as two categories: app-specific
and user-specific checks. For the app category, there are three
unique perspectives (i.e., the first three entries in the second
column): privilege checks, ownership checks, and status checks.
The meaning of these checks can be intuitively explained
in the right half of Figure 4. Specifically, privilege checks
are to determine if the calling app owns certain privileges;
ownership checks decide if the calling app is the owner of
the resource; status checks validate if the calling app is the
foreground app (as certain accesses are denied for background
apps). As shown in the third column of Table I, checks in
each perspective can be in various forms. For instance, (app)
privilege checks can be carried out by comparing UID/PID,
explicitly checking permissions, or even checking specific
flag fields in relevant data structures. Many of these checks
are semantically equivalent despite of their various syntactic
forms.

Similarly, the user checks include privilege checks (i.e.,
privileges associated with specific users), ownership checks,
status checks, and restriction checks that determine if a user
is restricted from certain operations. The intuitive explanations
are in the left half of Figure 4. Their details are explained later
in this section.

Based on this understanding, we propose to model Android
access control as follows:

GrantAccess := [App, User]

App := [Privilege,Ownership, Status]

User := [UsrPrivilege,Ownership, Status,Restriction]

Specifically, each access control check is modeled as a
pair consisting of the app and user aspects, each aspect itself
being a vector of multiple perspectives. Later we will show that
each perspective has a small number of canonical values. Our
tool aims to transform all access control checks to canonical
vectors.

Normalization. Although many of these checks are in different

5

forms, they have the equivalent semantics in terms of the
protection they entail. Framework developers often leverage
their domain knowledge of such implicit equivalence during
customization and version upgrade. As a result, access control
checks seem very diverse and sometimes even ad hoc across
customizations and versions. The key challenge to consistency
checking is hence to normalize these access control checks.
Our definition of equivalence is regarding the protection en-
abled by the checks, that is, the kind of malicious behaviors
precluded by the checks. For instance, enforcing that the calling
package signature matches that of "android" and enforcing
the calling process PID = Process.myPid() are syntac-
tically inconsistent from the perspective of a preloaded app.
However, neither the signature nor the PID can be acquired
by a third party app and hence both checks disable exploit
from a third party app and thus are semantically equivalent.

B. App-Specific Access Control

1) Privilege Perspective.: This perspective aims to verify
whether the calling app is allowed to perform an operation
because it holds a capability or is a privileged process / app
(e.g., app is granted the permission MASTER_CLEAR or has a
SYSTEM_UID thus can perform a factory reset). As depicted
in Table I, this perspective can be enforced based on the caller’s
permissions, UID, PID, and others.

We formulate the syntax of privilege checks as follows.

AppPrivCheck P := checkPermission(C) |
UID = 0 |...| P1 ∨ P2| P1 ∧ P2

A privilege check can be a primitive check (e.g., UID = 0)
or a compound check which is multiple primitive checks
connected by disjunction or conjunction. While the syntax
only lists two primitive checks, there are in fact many of such
checks, some of which will be discussed later in the section.
Despite of the different syntactic forms, the semantics of these
checks can be normalized to the following canonical Privilege
domain.

Privilege := {System, Dangerous, Normal,⊥}

The values in the domain are totally ordered. System is
the highest privilege level (acquired only by system apps and
processes); Dangerous is lower, indicating user confirmation
is needed (for protecting private data or for operations affecting
the user’s data); Normal indicates privileges that may be
acquired by third party apps without user confirmation; ⊥
implies no privilege.

We define a function evalAppPriv to evaluate a privilege
check to a canonical value. Its signature is the following.

evalAppPriv : AppPrivCheck 7→ Privilege

While we will define the semantics of evalAppPriv for
individual primitive checks later, the semantics for compound
checks are defined as follows.

evalAppPriv(P1 ∨ P2) = Min(evalAppPriv(P1), evalAppPriv(P2))

evalAppPriv(P1 ∧ P2) = Max(evalAppPriv(P1), evalAppPriv(P2))

Intuitively, if a public API entry enforces two privilege
requirements, we normalize it to the maximum privilege level
of the two. Conversely, if the access control requires either
one, we can safely map it to the minimum privilege of the
two checks, as a calling app only needs one of them to access
the resource.

Next, we describe a few primitive app privilege checks and
their (normalized) semantics. We cannot include others due to
the space limit.

Permission Checks. Android can invoke a permission vali-
dation call checkPermission(C) to check whether a given
app process has been granted a specific permission C. Ac-
cording to the Android specification, the protection level of
a permission can be Normal, Dangerous, Signature
or SystemOrSignature, depending on the resources pro-
tected. The normalized semantics of the checks is hence the
following.

evalAppPriv(checkPermission(C)) = System, PL(C) = SystemOrSignature ∨ System
Dangerous, PL(C) = Dangerous
Normal, PL(C) = Normal ∨ Undefined

The above normalization implies that two permissions are
semantically equivalent if they hold the same protection level,
denoted by the function PL(), regardless of their name. For
example, checkPermission("android.permission.
CONTROL_KEYGUARD") and checkPermission("
android.permission.MANAGE_FINGERPRINT")
are normalized to the same System value. The protection
levels SystemOrSignature and System are equivalent, since
neither can be acquired by a third party app. Please note that
the Undefined level refers to the cases where a permission is
not defined in an image, or what has been referred to as a
Permission Hare in [7]. Obviously, in such a case, the caller
can define the permission with the lowest protection to pass
the check.

UID Checks. System services mediate access to certain priv-
ileged resources based on the caller’s UID. To enforce this
check, the system services compare the caller’s UID with de-
fined privileged UIDs (e.g., ROOT_UID and SYSTEM_UID).
To evaluate the privilege requirement for these checks, we map
all UID checks smaller than FIRST_APPLICATION_UID
(the start of the range of UIDs reserved to apps) to the System
level:

evalAppPriv(UID = c,

with c < FIRST APPLICATION UID) = System

PID checks are similarly modeled.

Package Properties. To allow finer grained privilege require-
ment checks, Android may rely on other properties of the
calling app, which have strong association with its UID /
PID. As shown in Table I, we have identified the features
that can be used to infer the privilege of a calling app. The
system service might retrieve any of these attributes from
the calling app’s PackageInfo, ApplicationInfo or its
RunningAppProcessInfo and compare them with priv-
ileged ones (i.e., those assigned to system apps / processes).

6

Third party apps cannot obtain or share the privileged features
because they should be signed with the same certificate as the
defining app, or because Android enforces their uniqueness.

Let Name denote a package, process or sharedUserId
name of the caller. We normalize the privilege levels of Name
as follows:

evalAppPriv(Name = c, with c a sysapp) = System

evalAppPriv(Name = c, with c ∈ OtherName) = Normal

where OtherName denotes names that can be claimed by any
app.

Similarly, flags and signatures can serve the same purpose
of checking privileges. We normalize them in a similar fashion.

2) Ownership Perspective.: This perspective aims to verify
that the caller app is allowed to access a resource because it
owns the resource or to perform an operation pertaining to
itself (e.g. an app can only delete its own cache).

We define the function evalAppOwner to evaluate an
ownership check to a boolean value with true indicating that
the app is the owner of the resource.

evalAppOwner : AppOwnerCheck 7→ {True, False,⊥}

Back to our categorization in Table I, the ownership per-
spective can be generally enforced by comparing a security
feature of the calling app (e.g., UID and package name)
with a feature derived from the parameter to the public
entry point. Consider the following example extracted from
ActivityManagerService.

1 public boolean clearApplicationUserData(String packageName,
IPackageDataObserver observer, int userId) {

2 uid = Binder.getCallingUid(); pm =
AppGlobals.getPackageManager();

3 pkgUid = pm.getPackageUid(packageName, userId);
4 if (uid == pkgUid ||

checkComponentPermission(CLEAR_APP_USER_DATA))
5 pm.clearApplicationUserData(packageName, observer,

userId); ...

As shown, to clear an app’s data (specified by its package
name), the system service verifies that the calling process either
owns this app or holds a system permission. To enforce the
ownership check, the service first obtains the target app’s UID
(line 3) and then compares it against that of the calling app
(line 4). The same check can be enforced through comparing
the calling UID’s package name with the supplied name. Let
UID and Name be an identifier of the calling app (e.g., uid
in our example) and Arg an identifier (e.g., pkgUid) derived
from some input parameter (e.g., packageName). We model
an ownership check as follows.

evalAppOwner(UID = Arg) = True

evalAppOwner(Name = Arg) = True

3) Status Perspective.: This perspective aims to ensure that
the calling app is running in the foreground UI that the user
is currently interacting with. It enables the system service to
accept operations that are directly initiated by the user, rather
than by a background process.

We define a function evalAppStatus to evaluate an app
status check to a boolean value with true indicating that the
app is the foreground app.

evalAppStatus : AppStatusCheck 7→ {True, False,⊥}

As illustrated in Table I, status checks can be enforced
by verifying attributes associated with the calling process
(e.g.,importance flag) . The following example demon-
strates this:

1 private boolean isForegroundActivity() {
2 uid = Binder.getCallingUid(); pid =

Binder.getCallingPid();
3 List procs = ActivityManagerNative.getDefault()

.getRunningAppProcesses();
4 for (int i = 0; i < procs.size(); i++) {
5 RunningAppProcessInfo proc = procs.get(i);
6 if (proc.pid==pid&&proc.uid==uid

&&proc.importance==IMPORTANCE_FOREGROUND)
7 return true;

As shown, the system service first obtains the
RunningAppProcessInfo corresponding to the calling
app, and then checks whether its importance is equivalent
to IMPORTANCE_FOREGROUND (line 6). The modeling
details are elided.

C. User-Specific Access Control

The integration of multi-user and restricted-profile support
was a major enhancement introduced in Android 4.2 and 4.3,
respectively. Although it was initially advised to share devices
with people that the owner trusts, the multi-user support
gradually evolved towards less trustworthy environments (e.g.,
corporate). It has also evolved from being available only on
tablets in Kitkat to phone models as well in Lollipop.

Clearly, Android has incrementally progressed towards a
multi-user environment rather than having it designed-in from
the beginning, a path which can potentially introduce vulnera-
bilities if user-specific checks are not enforced consistently in
exposed framework APIs.

1) Privilege Perspective: Each Android user has distinct
privileges. For example, a primary user has special privileges,
e.g., it is always running in the background and has exclusive
access to some security critical settings. Other users are less
privileged. To normalize the privilege enforcement, we re-
emphasize our threat model under the multi-user scenario: a
new user added to the device, with a malicious intention, i.e.,
aiming to affect other users and/or bypass imposed restrictions.
We hence define the following normalized user privilege
domain.

UserPrivilege := {Primary, Secondary, Guest,⊥}

The elements in the domain are ordered: Primiary >
Secondary > Guest > ⊥. Where Primary is the most
privileged user (i.e., owning / administrating the device); it
cannot be removed by other users and is always running in the
background even when other users are running. Secondary is
less privileged (e.g., cannot access sms and telephony functions
by default) while Guest is the least privileged.

We further define a function evalUsrPriv that evaluates
a user privilege check to one of the privilege level.

7

evalUsrPriv : UsrPrivCheck 7→ UserPrivilege

As shown in Table I, Android relies on the UserID and as-
sociated flags to enforce user privilege separation. For instance,
the following code (from the LocationManagerService)
shows how proximity alerts are only available to the owner of
the device.

1 public void requestGeofence(LocationRequest request,
Geofence geofence, ..) {

2 int uid = Binder.getCallingUid();
3 if (UserHandle.getUserId(uid) != UserHandle.USER_OWNER) {
4 Log.w(T, "proximity alerts are available only to primary

user");
5 return;}

Some normalization rules of user privilege checks are as
follows. Others are omitted due to space limit.

evalUsrPriv(UserID = USER OWNER) = Primary

evalUsrPriv(UserF lag = FLAG ADMIN) = Primary

evalUsrPriv(UserF lag = FLAG GUEST) = Guest

2) User Ownership and Status Perspectives.: Android
leverages the user ID to ensure that a user cannot manipu-
late other user’s settings or perform sensitive operations on
behalf of others. Similar to checking the owner of an app
(Section III-B2), enforcing the user ownership is generally
performed by comparing a calling user ID with a user ID
supplied as a parameter to the public API.

Besides, through user-switches, a user can still be running
in the background when another user logs in. Thus, Android
further checks the status of a user (i.e., active or inactive) to
prevent inactive user from spying on active users or tamper
with settings affecting them (e.g., an inactive user starts a
camera recording session to spy on the active user). The check
is usually done by comparing the calling user ID with that of
the currently active user.

Since the modeling of these perspectives shares a lot of
similarity with the corresponding perspectives for app checks.
We omit the details.

3) Restrictions Perspective.: This perspective adds another
layer of security in the multi-user environment. Each user has
an associated user restriction list containing non-permissible
operations. This list is created when the user account was
created and can only be updated by the system process (or
the device admin). For example, by default, secondary users
cannot send, receive sms messages, or issue outgoing phone
calls. Guest users have additional restrictions (cannot configure
wifi or install apps from unknown sources).

Android enforces the user restrictions upon
performing particular operations. For example, the
ConnectivityManagerService ensures that users
with DISALLOW_NET WORK_RESET restrictions cannot
perform a network reset as shown in the following:

1 public void factoryReset() {
2 enforceConnectivityInternalPermission();
3 if (mUserManager.hasUserRestriction

(UserManager.DISALLOW_NETWORK_RESET))
4 return; ...

Different from other domains such as UsrPrivilege that
can be normalized to a small number of abstract levels,

Entry Point :

Security Checks

Convergence

Analysis
Entry Point:

Call Graph

Inconsistencies

Detection

In-Image Analysis

Rom 1

Preprocessing

System Services

& Entry Points

Collection

Call Graph

Construction

Security Checks

Modeling

Entry Points Analysis

Inconsistences

Rom 2 Entry Points

Analysis
Entry Point :

Security Checks

Inconsistencies

Detection

Cross-Image Analysis

Fig. 5. Approach

restrictions are more fine-grained so that different restrictions
have unique meanings. As such, the Restriction domain is
the universal set of all the defined restrictions. The semantics
function evalUsrRestriction evaluates a restriction check to
the corresponding restriction.

IV. SYSTEM DESIGN

Our tool, built on top of WALA [23], follows the high-
level work flow depicted in Figure 5. First, for each input
Android ROM, we extract the framework class files and collect
candidate system services. For each system service, we locate
all publicly accessible entry points and build a call graph
starting from each entry. We then model and normalize all
security related checks appearing inside the call graph of a
particular entry point.

A. Preprocessing

Given an Android image, AceDroid extracts its framework
class files. As different versions or vendors might pack the
code in different formats, we employ several existing tools to
handle each format gracefully [2], [5], [18], [4].

System Services Collection. Identifying exposed system ser-
vices in a decompiled Android ROM is not straightfor-
ward. System services registration is scattered throughout
the framework code. The registration point might further
vary across AOSP and custom Android images. To iden-
tify the services, we follow the key observation that the
registration APIs are quite stable across Android customiza-
tions and upgrades. Particularly, the APIs addService and
publishBinderService allow publishing a framework
system service through registering in the service manager.
AceDroid first pinpoints the invocation of these two APIs in
the framework, then resolves the registered service class type.

Entry Point Identification. To collect public entry points, we
first identify the exposed interface class of each service and
then retrieve its declared public APIs. We do also mark the
onReceive APIs in the identified services as public entry
points. Please note that unlike Kratos which considers only
unprotected receivers as public entry points, AceDroid extracts
both protected and non-protected receivers. This design deci-
sion aims to detect the inconsistent cases where two receivers
lead to the same sink point such that one is protected while
the other is not. A protected broadcast action is evaluated to
the highest privilege in our modeling.

8

Algorithm 1 Extracting Security Features.
Require: Inter-procedural Control Flow Graph icfg
Ensure: Security Features sFeatures of the corresponding public entry

1: function NORMALIZE(icfg)
2: entryBB = icfg.entry
3: return DFSTRAVERSEICFG(icfg, entryBB, null)
4: function DFSTRAVERSEICFG(icfg, bb, pathCheck)
5: if bb == icfg.exit then
6: sFeatures = sFeatures ∨ pathCheck
7: return
8: for all succ ∈ icfg.feasiblecontrolDepSuccessors(bb) do
9: pathCheck’ = COPYOF(pathCheck)

10: instr = LASTINSTRUCTIONOF(bb)
11: if isConditional(instr) and isTrueBranch(bb, succ) then
12: check = CLASSIFYSECURITYFEATURE(instr)
13: if check 6= null then
14: pathCheck’ = pathCheck’ ∧ check
15: DFSTRAVERSEICFG(icfg, succ, pathCheck’)
16: function CLASSIFYSECURITYFEATURE(cond)
17: X = DEPTRACK(cond.fstOperand)
18: Y = DEPTRACK(cond.sndOperand)
19: if isAccessControl(X) then
20: if isAppCheck(X) then
21: return [evalAppPriv(cond), evalAppOwner(cond),

evalAppStatus(cond)]
22: else if isUserCheck(X) then
23: return [evalUsrPriv(cond), evalUsrOwner(cond), evalUsrSta-

tus(cond), evalUsrRestriction(cond)]
24: else if isAccessControl(Y) then
25: /*symmetric and elided*/
26: else
27: return null

B. Modeling Explicit Security Checks.

Explicit permission enforcements are those conducted
by directly invoking security relevant APIs, such as
checkPermission(). To model these checks, AceDroid
traces back from the checks to the permission name strings
passed as arguments. To get the security checks associated with
the entry points of broadcast receivers (i.e., onReceive),
AceDroid extracts the permissions and intent filter actions
supplied to the registration APIs (e.g., registerReceiver)
AceDroid then verifies whether the action filters are protected
broadcasts within the analyzed images.

As discussed in Section III, we normalize android per-
missions based on their protection levels rather than their
names. Hence for the identified permissions, we extract the
corresponding protection levels from the framework configura-
tion files (framework-res/ AndroidManifest.xml),
custom files (e.g., lge-res/AndroidMani-fest.xml in
LG) and from preloaded apps manifests.

C. Modeling Implicit Security Checks.

Implicit security checks are those that serve the purpose
of access control but do not explicitly invoke security related
APIs. It is more challenging to identify, extract and normalize
these checks. The procedure is described in Algorithm 1. For
each entry point, the algorithm is fed with an inter-procedural
control flow graph (icfg) of the entry point. It normalizes the
security related conditional statements to canonical values.
Starting from the entry basic block of the icfg, depth-first
search along the control dependence edges is employed to
traverse all paths. In each path, when a conditional statement

is met, we normalize it if it is security related (lines 11-
12). Method classifySecurityFeature() is responsi-
ble for determining if a conditional statement is security related
and for normalization. Within the method (line 17 and line 19),
it checks if the first operand of the predicate is related to access
control by tracking its dependencies backward, including both
data dependencies and some special control dependencies as
explained later, in order to decide if it originates from some
predefined security feature(s) (e.g., PID, package signature,
and user ID as defined in Section III). Similarly, we back
track the second operand to a concrete value like 0 and 1000,
or a parameter of the entry point (line 18). From lines 20
to 23, the algorithm further checks the type of security check.
Depending on the type (app-specific or user-specific), different
canonicalization methods are invoked. These methods are
defined in Section III. Lines 24-25 handle the symmetric case,
e.g., a constant is used as the first operand.

A canonicalized condition (i.e., vectors of canonical values)
returned by classifySecurityFeature() is conjoined
with the current canonical condition derived from all the
preceding security checks along the path (line 14). We use
conjunction because all access control checks have to be
satisfied along this path. The canonical security condition for
the entire entry point is the disjunction of those for individual
paths (line 6). The semantics of conjunction and disjunction
(of canonical vector values) are defined in Section III. Note
that instructions, including predicates, are preprocessed to SSA
form, in which a predicate contains only a simple comparison.
Compound predicates (e.g., a conjunction of two primitive
comparisons) are broken down to multiple predicates.

For example, in the following code snippet

1 int userId = UserHandle.getCallingUserId();
2 int uid = Binder.getCallingUid();
3 checkPermission(BLUETOOTH_ADMIN_PERM); // Normal Protection
4 if (uid == 1000 ||

userId == ActivityManager.getCurrentUser()){...}

we get the canonical security condition for the first path (the
true branch of the UID comparison) as follows.

App = [evalAppPriv(checkPermission(B...) ∧ UID = 1000), ⊥, ⊥]
= [Max(evalAppPriv(checkPermission(B...)),

evalAppPriv(UID = 1000)),⊥,⊥]
= [Max(Normal, System), ⊥, ⊥] = [System, ⊥, ⊥]

User = [⊥,⊥,⊥,⊥]

Recall an app-aspect canonical value is a triple containing
the privilege, ownership, and status (Section III-B). The latter
two do not apply here, and thus the computation is mainly
for privilege. Since there are two privilege checks along the
first path: checkPermiss-ion(B...) and uid==1000.
The canonical value of the path is computed by applying
evalAppPriv() to the conjunction of the two. And the condition
for the second path is computed as follows.

App = [evalAppPriv(checkPermission(BLUE...)), ⊥, ⊥]
= [Normal, ⊥, ⊥]

User = [⊥, ⊥, evalUsrStatus(UserID = current), ⊥]
= [⊥, ⊥, T rue, ⊥]

9

The canonical condition for the entry point is the disjunc-
tion of the conditions of the two paths, which is the following.

App = [Normal, ⊥, ⊥] User = [⊥, ⊥, T rue, ⊥]

Function DEPTRACK() tracks the dependencies of a given
operand to its security related origin, if any. The tracking is
mainly performed based on data dependence and a special kind
of control dependence. Basically, if the origin of the operand
is a concrete value, e.g., 0 or 1000, the function returns the
value; if it is a parameter of the entry point, the function returns
a flag indicating that it is a user specified value; and if it is
originated from a certain pre-listed API method call such as
getCallingUID(), the function returns the corresponding
abstraction, e.g., UID. In addition to data dependencies, the
function also tracks a special kind of control dependence that
implies one-to-one mappings between variables and hence
have a nature similar to data dependencies. Consider the
following example.

1 boolean f = false;
2 if (uid == Binder.getCallingUid()) /*security check*/
3 f = true;
4 if (f) {/*access resource*/;}

Variable f at line 4 does not have any data dependence
with security related feature although line 4 is clearly an
access control check. Observe that f=true must imply
uid==Binder.getCallingUid(). There is a one-to-one
mapping between f and uid. This is similar to the nature of
data dependence. For example, in y=x+1, the data dependence
between y and x essentially denotes a one-to-one mapping.
Observe that if we change the comparison at line 2 to uid !=
Binder.getCallingUid(). The mapping is no longer
one-to-one as there are many possible values of uid that lead
to f=false. Therefore, we track control dependencies caused
by equivalence checks, which are the dominant kind of security
checks.

V. INCONSISTENCY ANALYSIS

We applied AceDroid to detect security checks inconsisten-
cies in various ROMs. We propose two analyses: cross-image
and in-image.

Through the cross-image analysis, we aim to identify
access control discrepancies along similar public entry points
across two Android images. An intuitive approach to perform
this analysis is to compare the security enforcement leading to
common sinks in two images. This approach is heavyweight
due to the sheer number of sinks and does not seem to be
necessary: for common public entry points, we observe that
vendors rarely alter the original sinks during customization,
rather, they might alter the implementation to adopt it to
custom hardware / functionalities. Intuitively, if vendors decide
to add new resources, they would usually add new public APIs
allowing the invocation of the corresponding sinks.

We rely on this key observation to devise a faster compar-
ison of common public entry points. We compare the security
enforcement across common public entries regardless of their
invoked sinks.

However, although comparing common APIs (identified by
a common method name and descriptor) covers the majority
of APIs within an image, it does not allow reasoning about all

cases, especially in vendor customized images. To generate
more accurate results, we address the following important
customization aspects in our cross-image analysis.

Renamed APIs. We observe that the signature of some
custom public API (i.e., not appearing in the AOSP code-
base) is not stable throughout version updates. For exam-
ple, The API reboot() in Samsung S6 Edge (6.0.1)’s
DevicePolicyManager is renamed to rebootMDM() in
S7 Edge (7.0). To address this, AceDroid compares the call
graphs of non-common APIs to identify the ones sharing the
same implementation.

Exposed/ Non-Exposed APIs. Certain system service APIs
are for exclusive system-use and thus are not exposed via the
service’s AIDL class. Surprisingly, we found out through our
inspection of vendor added APIs that sometimes, vendors do
expose APIs which are internal in their counter AOSP version.
This practice is quite risky because of the following: intuitively,
since these APIs are meant for framework use, access control
is not needed; however, if vendors decide to expose them, they
should remedy the exposure with strong access control checks.
A failure to do so might expose important privileged resources.
To address these cases, we try to match vendor added public
APIs inside a service (by signature comparison) with the
private APIs of the counter service. (or those registered in a
local service, within the same class). If a match is found, we
compare their imposed access control checks, please note that
we map an unexposed feature to the canonical value with
the highest security.

The in-image analysis compares canonical conditions for
multiple accesses to a same resource. We followed the taxon-
omy proposed by [11] to identify the sinks. We further focused
on vendor added methods in this analysis as inconsistencies in
other methods would be detected by the cross-image analysis.
Details are omitted due to space limit.

VI. EVALUATION

To evaluate the effectiveness of access control modeling
and normalization, we applied AceDroid to detect inconsisten-
cies in 12 factory images. Our results show that modeling and
normalization are critical to cross-image analysis due to their
capabilities of handling implementation differences caused by
customization; they have also substantially improved the state-
of-the-art in-image analysis.

A. Collected Images.

In our research, we collected 12 factory images from online
repositories [3], [1] and physical devices. These images are
customized by 5 distinct vendors and operate Android versions
from 5.0 to 7.0. We selected our images carefully to allow
comparison through versions upgrades, different vendors and
different models (e.g., Tablet versus Phone).

B. Runtime Overhead.

Table II shows the details of our collected system services
and identified entry points. The 2nd column reports the number
of collected services while the 3rd column reports the number
of detected public APIs and registered receivers. Please note
that some of the vendor added services were not correctly

10

TABLE II. STATISTICS SUMMARY

Image # of Services # Exposed Methods
& Receivers

In-Image
Time (min)

Max Cross-Image
Time (min)

Nexus 5.0.2 85 1491 44 17
Nexus 6.0 87 1715 53 21

Nexus 6.0.1 87 1727 54 21
S6 Edge 6.0.1 124 3605 99 41

Tab S 8.4 (6.0.1) 89 2187 73 32
S7 Edge 7.0 119 3138 112 41
LG G3 5.0.2 86 1693 59 27
LG G4 6.0 89 1917 59 27

HTC M8 5.0.2 85 1556 53 26
HTC M8 6.0 87 1882 62 29

Sony Xperia XA 6.0 92 2003 75 24
Sony Xperia XZ 7.0 93 2032 79 24

decompiled because of some limitations in pre-processing the
ROMs.

The last two columns of Table II show a summary of
the time consumed by AceDroid to conduct the in-image and
cross-image analyses. As shown, the in-image analysis takes
on average 65.2 minutes. Since this is a one time effort, the
time is acceptable.

The cross-image analysis time varies based on the number
of common entry points between two given images. Thus,
we report the time consumed in the comparison between
images sharing the maximum number of common entries. As
illustrated, comparing S6 Edge and S7 Edge incurs the longest
time, since they share the largest number of common entries.

C. Inconsistencies Landscape.

AceDroid discovered that all analyzed images contain se-
curity enforcement inconsistencies. Table III shows the details
and reads as follow: each row / column corresponds to a unique
image. The intersection of a row and a column shows the
inconsistencies discovered through comparing the two images,
depicted by the column / row name. The in-image analysis
results are presented in the intersection of the same name
column / row.

To measure the True Positive (TP) and False Positive
(FP) rate, we manually inspected each reported inconsistency.
The white cells in Table III depict the discovered TP and
the Total # of reported inconsistencies. The total number
of unique TP vulnerabilities found in these 12 images is
73. Note that a vulnerability can be reported by multiple
inconsistency analyses. Through the normalization process,
AceDroid avoids detecting cases where two accesses apply
different security checks, yet expressing the same protection
from the perspective of a malicious app / user. That is why, the
reported inconsistencies in the white cells all represent cases
of accesses applying actual different checks.

To demonstrate the usefulness of our normalization pro-
cess, we report the number of false inconsistencies detected if
we extend a simpler approach to handle cross-image analysis
without sophisticated analysis. The results are depicted in the
shaded cells. Due to the diverse security checks introduced
by vendor customization, the detected instances were quite
high, e.g., reaching a tremendous number of 523 false alarms
when comparing Samsung S7 Edge 7.0 and Nexus 5.0.2 (on
average 229 instances). After the normalization, we were able
to reduce this number to 12 false inconsistencies (on average
13 instances). This clearly demonstrates the importance of our
normalization process.

Package Properties, 3%

User Privilege, 15%

User Ownership, 3%

User Status, 3%

User Restriction, 7%

Exposed Versus Non-

Exposed APIs, 1%

Broadcast

Receivers

Inconsistencies,

19%

Permission, 28%

UID Checks, 16%

PID Checks, 5%

Other, 63%

Fig. 6. Inconsistencies Breakdown

In-Image Results. As shown in the table, AceDroid detects
a significant number of inconsistencies through the in-image
analysis, where Nexus images exhibit the smallest number of
inconsistencies. Sony and Samsung introduce the highest in-
consistencies. A possible reason is that these vendors perform
an extensive customization of the AOSP code bases (as shown
in Table II).

Cross-Image Results. The problems are also pervasive
across different device manufacturers: For instance,
comparing Nexus (6.0.1) with Samsung S6 Edge(6.0.1)
leads to 21 actual inconsistencies (e.g., Samsung’s
setStreamVolume() in AudioService does not
include a user restriction check found in Nexus (6.0.1)).
Interestingly, even within different models from the same
vendor and OS version, security enforcements are different:
12 true inconsistencies were detected across Samsung’s
S6 Edge (6.0.1) and Tab S 8.4 (6.0.1). For example, the
custom API setMultipleScreenStateOverride in
PowerManagerService enforces a system permission in
Tab S while it enforces no checks in the counter S6 Edge.
These findings further indicate the decentralized nature of
vendor customization.

We also observed that version updates cause
a significant number of inconsistencies. For
example, the APIs setOemUnlockEnabled in
PersistentDataBlockService and mount in
MountService both add a user-based check (primary user
and a restriction check) in the images 6.0. Naturally, this
could be attributed to the fact that through version updates,
vendors patch previously unprotected accesses.

D. Inconsistencies Breakdown.

We further analyzed our reported inconsistencies detected
through both analyses, and classified each case based on
the security features described in Section III. We found out
that inconsistencies are caused by the absence or alteration
of various attributes. The detailed breakdown is depicted in
Figure 6. As depicted, 63% of the reported cases are due
to permissions, UID, and broadcast receivers inconsistencies
and hence may be detected by an approximate solution that
only models explicit permission checks. However, we want to
point out that such true positives would be substantially over-
shadowed by the large number of false positives due to the
lack of normalization and path-sensitive analysis (i.e., a few
hundreds per-image as shown in Table III).

E. False Positives.

As illustrated in the results, not all our reported inconsis-
tencies are actually TPs. Our average FP rate is 31.4%. The
in-image analysis particularly introduces more FPs because of
specific limitations that cannot be automatically handled. Our

11

TABLE III. INCONSISTENCIES LANDSCAPE

Image Nexus
5.0.2

Nexus
6.0

Nexus
6.0.1

Samsung
S6 Edge 6.0.1

Samsung
Tab S 8.4 6.0.1

Samsung
S7 Edge 7.0

LG G3
5.0.2

LG G4
6.0

HTC M8
5.0.2

HTC M8
6.0

Sony Xperia
XA 6.0

Sony Xperia
XZ 7.0

Nexus 5.0.2 21/32 13/17 17/19 38/47 35/45 39/51 7/9 28/36 9/12 24/32 26/35 36/53
Nexus 6.0 101 15/29 6/9 27/37 24/35 34/38 20/26 15/19 22/28 11/15 13/18 33/47

Nexus 6.0.1 133 55 12/26 21/28 18/26 32/40 24/28 21/28 24/31 15/22 19/27 19/36
S6 Edge 6.0.1 546 446 410 36/64 12/16 26/33 40/51 35/48 37/49 26/40 28/43 36/52

Tab S 8.4 (6.0.1) 503 422 379 212 30/53 29/35 34/48 31/46 34/47 22/37 23/39 31/46
S7 Edge 7.0 562 457 498 289 314 39/68 43/51 35/52 37/49 26/40 28/43 36/52
LG G3 5.0.2 115 96 188 338 305 468 23/41 19/26 13/17 31/41 28/39 33/43
LG G4 6.0 209 198 222 403 378 313 215 28/41 28/37 26/32 23/32 28/36

HTC M8 5.0.2 68 183 198 331 298 325 233 401 30/47 23/33 21/31 35/46
HTC M8 6.0 186 87 119 268 243 366 274 333 264 29/46 26/41 24/32

Xperia XA 6.0 183 89 123 284 252 369 274 340 271 312 32/48 16/21
Xperia XZ 7.0 246 186 221 410 389 491 305 238 294 213 247 34/54

manual inspection reveals that the FPs are mainly caused by
the following limitations. First, not all identified sinks through
the in-image analysis are privileged; We followed several
heuristics to reduce insensitive sinks; still, there are cases
that are not important. Second, some of our modeled checks
might seldom serve a non-security purpose. For example, the
user’s restriction list might be consulted before attempting
to add a new entry to it. Third, some user checks reflect
specific customization needs. For example, Samsung adds
additional user checks UserId == 100, UserId == 200
for implementing a custom component. Similarly, HTC and
LG add custom user-based checks to enforce their device ad-
ministration. Through cross-vendor analysis, AceDroid cannot
recognize those custom checks.

F. Improving Kratos in In-Image Analysis

In this section, we aim to show how normalization can
improve the state-of-the-art system Kratos. We simulate the
results of Kratos since the tool is not public. Please note
that our simulation of Kratos (SimKratos) is our best effort
to conduct the tool’s analysis and might not lead to the
exact results (e.g., we might miss non-explicit package-based
checks that the authors annotate manually). Recall that Kratos
considers the set of explicit checks for an access as the
protection for the access, without normalization or considering
their relations. We report the results in column 4 in Table IV
inc*. In contrast, we conduct AceDroid ’s in-image analysis,
perform our proposed modeling and normalization and report
the detected inconsistencies in column 2 in Table IV inc*.
Our reported TP is the set of cases that are only semantically
different (i.e., with different protections).

As shown in Table IV, SimKratos reports a larger number
of inconsistencies, where on average 22% are actual inconsis-
tencies. In comparison, AceDroid detects more TPs, an average
increase of 63%. Besides, by suppressing the semantically
equivalent checks, we reduce SimKratos’ FP by 65%. This
illustrates the importance of our technique.

VII. FINDINGS

We analyzed the reported consistencies and found 73 actual
inconsistencies. We picked the instances for which we had
the physical device and confirmed 27 actual vulnerabilities
that can be exploited to conduct different attacks. Table V
summarizes some of the confirmed vulnerabilities. We reported
the high profile attacks discovered through our analysis to the
corresponding vendors (Samsung, LG, HTC, Sony). More than
20 of our reported vulnerabilities have been acknowledged

TABLE IV. COMPARISON WITH SIMKRATOS

Image AceDroid Simkratos TP FP
Inc* TP # Inc* TP %↑ %↓

Nexus 5.0.2 32 21 (65.6 %) 53 13 (24.5 %) 62 73
Nexus 6.0 29 15 (51.7 %) 47 7 (14.9 %) 114 65
Nexus 6.0.1 26 12 (46.2 %) 45 7 (15.6 %) 71 63
S6 Edge 6.0.1 64 36 (57.8 %) 98 26 (26.5 %) 42 63
Tab S 8.4 6.0.1 53 30 (56.6 %) 92 21 (22.8 %) 43 68
S7 Edge 7.0 68 39 (57 %) 103 18 (17.5 %) 56 74
LG G3 5.0.2 41 23 (57 %) 71 16 (22.1 %) 44 68
LG G4 6.0 41 28 (63.3 %) 71 17 (23.6 %) 43 64
HTC M8 5.0.2 47 30 (63.8 %) 71 18 (25.4 %) 67 68
HTC M8 6.0 46 29 (63 %) 68 18 (26.5 %) 61 66
Xperia XA 6.0 48 32 (66 %) 69 18 (26.1 %) 72 69
Xperia XZ 7.0 54 34 (62 %) 75 20 (26.7 %) 70 64

TABLE V. CONFIRMED ATTACKS
Security Impact Description Victim Device(s)

Privilege Escalation Eavesdropping on input events
such as screen taps LG G4 6.0

Privilege Escalation Intercepting and injecting input events
such as screen taps LG G4 6.0

Privilege Escalation Sending SMS messages
including premium messages S6 Edge 6.0.1

DoS Denying receiving of SMS
messages

S6 Edge (6.0.1)
HTC M8 6.0

Privilege Escalation Enabling Bluetooth Quietly S6 Edge (6.0.1)
LG G4 6.0

Privilege Escalation Persist Bluetooth Settings LG G4

Privilege Escalation Bypassing and Forging User Restrictions S6 Edge 6.0.1
S7 Edge (7.0)

Privilege Escalation Injecting Hard Key Events
such as Volume Up, Power Off, Screen Off Sony Xperia 6.0

Privilege Escalation Rebooting the phone into Recovery Mode Sony Xperia 6.0
Privilege Escalation Phone Shutdown Sony Xperia XA 6.0
Privilege Escalation Turning Radio On / Off LG G3 5.0.2

DoS Unmounting SD Card persistently HTC M8 6.0
DoS Turning-Off Wifi persistently HTC M8 6.0
DoS Turning-Off Bluetooth persistently LG G3 5.0.2

Privilege Escalation Manipulating Network Firewall Rules Xperia XA 6.0

and reproduced by the vendors. Other cases are still being
investigated by the vendors. Due to space limitations, we
discuss 7 attacks, where 2 are ranked as Critical by the
corresponding vendors.

Triggering a System Shutdown in Sony. AceDroid
discovered several exploitable inconsistencies in Sony
devices allowing to trigger a system shutdown; an
operation always reserved to the system/ preloaded apps.
A notable inconsistency discovered through comparing two
Sony devices is depicted in Figure 7. As illustrated
in Sony Xperia XA’s simplified program paths (on
the left), the vendor introduces a new public entry
point (i.e., DevicePolicyManager.reboot())
enforcing disjoint privilege checks: The caller needs
to satisfy either one of three UID checks (1000,
1001,..) or possess the normal level permission

12

Normal

Permission Check

UID

Check 2

DM.reboot()

iPowerManager.Reboot()

User Id Check

UID

Check 3

UID

Check 1

Sony Xperia XA

DM.reboot()

iPowerManager.Reboot()

User Id Check

UID Check 1

UID Check 2

Normal

Permission Check

UID Check 3

Sony Xperia XZ

Fig. 7. DevicePolicyManager.Reboot() across two Sony devices

(com.sonymobile.permission.ENTERPRISE_API).
Additionally, the calling app should satisfy the user privilege
check (UserId = 0). The API then invokes the API reboot()
with the PowerManagerService after escalating to system
privilege. Clearly, this API is vulnerable as a calling app
can simply meet the normal permission requirement (and the
userId = 0) to trigger the system shutdown. On the contrary,
AceDroid found out that the same custom API on Sony
Xperia XZ is well protected. As illustrated on the right side
of the same figure, reboot() enforces a conjoint UID
requirement at the end of the execution (which was a disjoint
requirement in Xperia XA). As a result, a calling app cannot
exploit the normal permission requirement to trigger the
reboot as it needs to satisfy the additional UID check.

Although the main strength of our path-sensitive analysis
and normalization lies in suppressing false positives, this
specific case proves that it is also powerful for discovering
important inconsistencies that cannot otherwise be found with-
out sophisticated analysis; e.g. Kratos would fail to discover
this case as the union of the access control checks would look
exactly the same for the two instances.

Eavesdropping Screen Taps on LG. We discovered
through our cross-image analysis that LG G4 (6.0)’s
WindowManagerService has exposed a sensitive API,
which is internal in other images (e.g., Nexus 6.0), without
taking any security measures. Specifically, the exposed API
allows retrieving an InputChannel instance of a given
input device, and thus can be leveraged to monitor screen
tap coordinates received by the window manager. Since the
API does not enforce any status check for the calling app, we
were able to invoke this API in a background service and
successfully eavesdrop on the user’s input taps coordinates
(e.g., soft key strokes to infer typed text, etc).

Injecting Input Events on LG. Similarly, AceDroid revealed
through the cross-image analysis that LG G4 further exposes
another critical API, which is private on other images. The
API allows registering an InputFilter in the custom LG’s
WindowManagerService, without any security checks.
The vulnerable API can be exploited similarly to intercept
all screen tap events. More importantly, the InputFilter’s
callback method, further allows to inject new input events.
Given the capabilities it allows, an attacker can leverage the
exposed API to write a powerful tool to achieve critical
operations; e.g., inferring the user’s password in a banking
app, triggering a money transfer order, etc.

Bypassing and Tampering with User Restrictions. Interest-
ingly, we discovered through our analysis that the user restric-
tions (employed to restrict user capabilities as discussed in
Section III-C3) can be manipulated by a non-privileged caller
in several Samsung devices. Specifically, our inconsistency re-
sults for the UserManagerService shows that the internal
API for updating the user restrictions can be reached through
multiple entry points enforcing different security checks. One
entry point verifies whether the caller is System UID, root UID,
or has the the signature permission MANAGE_USERS before
updating the user restrictions. The second entry point, added
by Samsung, invokes the internal API without enforcing any
security checks, enabling a non-privileged app to maliciously
manipulate the restrictions. First, an attacker can exploit the
new entry point to bypass existing restrictions set by the
device owner or administrator (e.g. access restricted SMS
operations through setting DISALLOW_SMS to false). More
dangerously, the vulnerability can cause a major denial of
service by disabling all operations that can be controlled
through the user restrictions list (e.g., disallowing to perform
outgoing calls, to configure system wide settings, etc). The
attacking app can even prevent its uninstallation through
setting the restrictions DISALLOW_UNINSTALL_APPS and
DISALLOW_SAFE_BOOT to true.

Forging Premium SMS messages. The SMS Manager
allows sending SMS messages through the exposed API
sendText(). Figure 8 shows the flow of this API’s imple-
mentation. As illustrated, once an app invokes sendText(),
the service verifies that the calling app is granted the
SEND_SMS permission and that the calling user does not have
any restrictions on sending SMS messages (i.e., restriction
DISALLOW_SMS). It then calls the internal sendText()
in SMSDispatcher. AceDroid discovered that Samsung S6
edge (6.0) registers a new broadcast receiver in the same class,
allowing to invoke the internal SendText() API. Surpris-
ingly, this broadcast receiver is not protected, enabling any
app to send SMS messages without the required SEND_SMS
permission and allowing users to bypass the DISALLOW_SMS
restriction. Even worse, this receiver can be further exploited
to send premium SMS messages without requiring user con-
firmation. Once the request is received, the service inspects
the destination phone number of the SMS message before
invoking sendSMS() that performs the actual sending of
the SMS. If the destination number is a premium short
code, the service verifies whether the caller has the system
permission SEND_RESPOND_VIA_MESSAGE, otherwise it
prompts the user to confirm sending the premium SMS as it
imposes monetary charges. Clearly, enforcing the permission
SEND_RESPOND_VIA_ MESSAGE inside the context of the
broadcast receiver is not effective at all, as it implies checking
whether the SMS service itself holds the permission.

SMS Receipt DoS. We discovered that another
component related to the SMS functionalities is
customized through additional broadcast receivers.
Notably, the SmsStorageMonitor keeps track of
available SMS storage space through listening to the
protected broadcasts ACTION_DEVICE_STORAGE_FULL
and ACTION_DEVICE_STORAGE_NOT_FULL. If the
former broadcast is received, the monitor sets the
field mStorageAvailable to false, otherwise to

13

sendText(..text..)

onReceive(…)
Action = “GCF_COMMAND”

text = intent.getString(“..”);

sendText(..text)

sendSMS(..text)

permission SEND_SMS

UserRestriction DISALLOW_SMS

Premium Number?

SEND_RESPONSE_VIA_MESSAGE

permission
SEND_RESPONSE_VIA_MESSAGE

permission Calling Identity is System

in this case. So Permission

check Will succeed

SMS Manager

SMS Dispatcher

3rd Party App

Fig. 8. Sending SMS Paths

true. Upon receiving a new SMS from the RIL, the
InboundSMSHandler consults this field to check if
there is enough memory to store the incoming SMS and
subsequently dispatches it to the SMS app. Our analysis
reveals that Samsung and HTC added two non-protected
broadcasts updating the field mStorageAvailable in a
similar manner. Non-system apps can exploit these broadcasts
to stop users from receiving SMS messages.

Enabling Bluetooth Quietly. The Bluetooth
ManagerService saves the bluetooth state across
boot-ups in the Settings.Global provider. Our analysis
reveals that updating the bluetooth entry in the provider can
be reached through different paths. The API disable sets
the state to Off after verifying that the calling app is either
SYSTEM, or the user is in the background and the app holds
BLUETOOTH_ADMIN permission. LG and Samsung add other
paths updating the state without user status or app privilege
checks. Consequently, an app belonging to a non-active user
can alter the bluetooth settings without any permissions.

VIII. RELATED WORK

Security risks in Android customization. The vendor cus-
tomizations have been proven to be problematic in prior
studies. ADDICTED [37] finds under-protected Linux drivers
on customized ROMs by comparing them with their coun-
terparts on AOSP images. Harehunter [7] reveals the Hang-
ing Attributes References vulnerability caused by the under-
regulated Android customization. The Hare vulnerability hap-
pens when an attribute is used on a device but the party
defining it has been removed. A malicious app can then fill
the gap to acquire critical capabilities, by simply disguising
as the owner of the attribute. Another prominent research
work analyzes pre-installed apps and reports the presence of
known problems such as over-privileged apps, permission re-
delegation [15], [14]. Gallo et al [16] analyzed five different
custom devices and concluded that serious security issues
such as poorer permission control grow sharply with the level
of customization. More recently, Zhang et al. analyzed ION
related vulnerabilities caused by the customization it undergoes
through different devices [35].

Vulnerability detection on Android. The high flexibility
of Android’s security architecture demands a complete un-
derstanding of the permission model. Stowaway [14] and

PScout [10] lead the way by mapping individual APIs to
the required permission. Recently, Axplorer [11] produces
improved mappings based on an accurate static analysis of
the framework. This understanding has inspired us to conduct
our normalization analysis. It has inspired other researchers
to identify vulnerabilities at apps and framework. Prominent
examples include the re-delegation problem [15], content
provider leaks [20], issues in push-cloud messaging [27],
in the app uninstallation process [36], crypto misuse in
apps [12], [24] and others [13]. In addition, Whyper [30]
and AutoCog [31] check the inconsistency between an app’s
permissions and its description. AsDroid [22] leverages the
inconsistency between the code and GUI to detect malicious
behaviors. AAPL [28] examines inconsistent behaviors within
similar functionalities of similar apps to detect privacy leaks.
Our work is fundamentally different from all these efforts,
as we do not focus on apps nor specific services. Rather,
we aim to analyze the whole framework with regards to
the consistency of security enforcements. A closely related
work to our user-based modeling and resulting inconsistencies
is the work [32] aiming to evaluate Android’s multi-user
framework from several aspects. The work reveals important
vulnerabilities; however, it is based on hypotheses and manual
experiments and thus cannot be applied for our purpose.

Static analysis on Android. Static analysis techniques have
been proposed to address the special characteristics of An-
droid platform. Particularly, FlowDroid [9], DroidSafe [19],
AndroidLeaks [17], Amandroid [34] and BidText [21] have
employed static taint analysis on Android apps for tracing
information flow and detecting privacy leaks. Other tools
such as Epicc [29], Didfail [25] and IccTA [26] handle other
particular challenges of Android’s ICC.

IX. CONCLUSION

Given the complexity of Android access control enforce-
ment, it is evident that inconsistencies will be introduced
when new functionalities are integrated into the AOSP code
base through version updates or vendor customization. In
this paper, we provide a systematic categorization of access
controls employed by Android system services and propose
a path-sensitive modeling and a normalization technique to
address specific challenges characterizing various checks. We
employed our tool to detect framework security inconsistencies
in 12 Android images. Through our conduct analyses within
and across images, we uncovered substantial inconsistencies,
some leading to high impact security breaches.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their construc-
tive comments. This research was supported, in part, by
DARPA under contract FA8650-15-C-7562, NSF under awards
1748764, 1409668 , and 1320444, ONR under contracts
N000141410468 and N000141712947, and Sandia National
Lab under award 1701331. Ninghui Li's work was supported
in part by the United States National Science Foundation
under Grant No. 1314688, and the United States ARO grant
W911NF-16-1-0127. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

14

REFERENCES

[1] “Android revolution mobile device technologies,” http://android-
revolution-hd.blogspot.com/p/android-revolution-hd-mirror-site-
var.html, last Accessed: May 13, 2017.

[2] “Baksmali: a disassembler for Android’s dex format,”
https://code.google.com/p/smali.

[3] “Samsung updates: Latest news and firmware for your samsung de-
vices!” http://samsung-updates.com/, accessed: 05/02/2017.

[4] “sdat2img: Convert sparse android data image (.dat) into filesystem ext4
image (.img),” https://github.com/xpirt/sdat2img.

[5] “Smali: an assembler for Android’s dex format,”
https://github.com/JesusFreke/smali.

[6] “70 amazing Android statistics and facts(april 2017),”
http://expandedramblings.com/index.php/android-statistics/, 2017.

[7] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou,
W. Du, and M. Grace, “Hare hunting in the wild android: A study on
the threat of hanging attribute references,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015.

[8] Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security
configurations in custom android roms via differential analysis,” in
Proceedings of the 25th USENIX Conference on Security, ser. SEC’16,
2016.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14,
New York, NY, USA, 2014.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228.

[11] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On demystifying the android application framework: Re-visiting
android permission specification analysis,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
2016.

[12] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013.

[13] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, Hey,
You, Get Off of My Clipboard. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 144–161.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11. New York,
NY, USA: ACM, 2011.

[15] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permis-
sion re-delegation: Attacks and defenses,” in Proceedings of the 20th
USENIX Security Symposium, 2011.

[16] R. Gallo, P. Hongo, R. Dahab, L. C. Navarro, H. Kawakami, K. Galvão,
G. Junqueira, and L. Ribeiro, “Security and system architecture: Com-
parison of android customizations,” in Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
ser. WiSec ’15. New York, NY, USA: ACM, 2015.

[17] C. Gibler, J. Crussell, J. Erickson, and H. Chen, AndroidLeaks: auto-
matically detecting potential privacy leaks in android applications on
a large scale. Springer, 2012.

[18] Google, “ART compiler,” https://source.android.com/devices/tech/dalvik/,
2017.

[19] M. I. Gordon, D. Kim, J. Perkins, L. Gilhamy, N. Nguyenz, and M. Ri-
nard, “Information-flow analysis of Android applications in DroidSafe,”
in NDSS, 2015.

[20] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock Android smartphones,” in Proceedings of
the 19th Network and Distributed System Security Symposium (NDSS),
2012.

[21] J. Huang, X. Zhang, and L. Tan, “Detecting sensitive data disclosure via
bi-directional text correlation analysis,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016.

[22] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International Con-
ference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014.

[23] IBM, “WALA: T.J. Watson Libraries for Analysis,”
http://wala.sourceforge.net, 2017.

[24] S. H. Kim, D. Han, and D. H. Lee, “Predictability of android openssl’s
pseudo random number generator,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 659–668. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516706

[25] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
taint flow analysis for app sets,” in Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java
Program Analysis. ACM, 2014.

[26] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “I know what leaked in your pocket:
uncovering privacy leaks on android apps with static taint analysis,”
arXiv preprint arXiv:1404.7431, 2014.

[27] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han,
“Mayhem in the push clouds: Understanding and mitigating security
hazards in mobile push-messaging services,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014.

[28] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee,
and G. Jiang, “Checking more and alerting less: Detecting privacy
leakages via enhanced data-flow analysis and peer voting.” in the 2015
Network and Distributed System Security Symposium (NDSS ’15), 2015.

[29] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security analysis,”
in Proceedings of the 22nd USENIX Conference on Security, ser.
SEC’13. Berkeley, CA, USA: USENIX Association, 2013.

[30] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications,” in Proceedings of
the 22Nd USENIX Conference on Security, ser. SEC’13, Berkeley, CA,
USA, 2013.

[31] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14, 2014.

[32] P. Ratazzi, Y. Aafer, A. Ahlawat, H. Hao, Y. Wang, and W. Du, “A
systematic security evaluation of Android’s multi-user framework,” in
Mobile Security Technologies (MoST) 2014, ser. MoST’14, San Jose,
CA, USA, May 17 2014.

[33] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao, “Kratos:
Discovering inconsistent security policy enforcement in the android
framework,” in Proc. of ISOC NDSS, 2016.

[34] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. ACM, 2014.

[35] H. Zhang, D. She, and Z. Qian, “Android ion hazard: The curse of
customizable memory management system,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. ACM, 2016.

[36] X. Zhang, K. Ying, Y. Aafer, Z. Qiu, and W. Du, “Life after app
uninstallation: Are the data still alive? data residue attacks on android,”
ser. NDSS ’16.

[37] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of frag-
mentation: Security hazards in android device driver customizations,”
in 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA.

15

