
NAR-Miner: Discovering Negative Association Rules from Code
for Bug Detection

Pan Bian, Bin Liang, Wenchang Shi,
Jianjun Huang

{bianpan,liangb,wenchang,hjj}@ruc.edu.cn
School of Information, Renmin University of China

Key Laboratory of DEKE, Renmin University of China
Beijing, China

Yan Cai
ycai.mail@gmail.com

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

Beijing, China

ABSTRACT
Inferring programming rules from source code based on datamining
techniques has been proven to be effective to detect software bugs.
Existing studies focus on discovering positive rules in the form
of A ⇒ B, indicating that when operation A appears, operation B
should also be here. Unfortunately, the negative rules (A ⇒ ¬B),
indicating the mutual suppression or conflict relationships among
program elements, have not gotten the attention they deserve. In
fact, violating such negative rules can also result in serious bugs.

In this paper, we propose a novel method called NAR-Miner to
automatically extract negative association programming rules from
large-scale systems, and detect their violations to find bugs. How-
ever, mining negative rules faces a more serious rule explosion
problem than mining positive ones. Most of the obtained negative
rules are uninteresting and can lead to unacceptable false alarms.
To address the issue, we design a semantics-constrained mining al-
gorithm to focus rule mining on the elements with strong semantic
relationships. Furthermore, we introduce information entropy to
rank candidate negative rules and highlight the interesting ones.
Consequently, we effectively mitigate the rule explosion problem.
We implement NAR-Miner and apply it to a Linux kernel (v4.12-rc6).
The experiments show that the uninteresting rules are dramatically
reduced and 17 detected violations have been confirmed as real
bugs and patched by kernel community. We also apply NAR-Miner
to PostgreSQL, OpenSSL and FFmpeg and discover six real bugs.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;

KEYWORDS
Bug Detection, Code Mining, Negative Rule, Rule Explosion
ACM Reference Format:
Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. 2018.
NAR-Miner: Discovering Negative Association Rules from Code for Bug

∗Bin Liang is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236032

Detection. In Proceedings of the 26th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236032

1 INTRODUCTION
Static bug/vulnerability detection techniques usually require some
prior knowledge (i.e., detection rules or vulnerability signatures)
[9, 13, 17, 19]. In recent years, it has been widely proven that code
mining approaches on bug/vulnerability detection are very effective
[1, 4, 6, 7, 14, 20, 25–27, 29, 30, 36, 38, 44, 47, 49, 51–53, 57, 60]. Such
approaches automatically extract implicit programming rules from
program source code and further detect violations of these rules as
bugs or vulnerabilities. Generally, during code mining, the program
source code is first transformed into itemsets [6, 25, 26, 49], graphs
[7, 34, 57], or other forms. Next, data mining algorithms are applied
on the transformed forms to extract patterns (e.g., frequent itemsets
or sub-graphs) and infer programming rules. The last step is to
detect violations against the inferred rules. For example, PR-Miner
[25] and AntMiner [26] mine frequent itemsets from the Linux
kernel to extract association rules (as detection rules) and have
detected dozens of unknown bugs.

The basic idea of these existing studies is to utilize statistics
to find program elements with accompanying relationship from
source code. This relationship exhibits as a positive programming
pattern. That is, in the target project, some program elements ap-
pear together frequently (up to a given threshold) or there is a
certain connection among them. For example, PR-Miner [25] and
AntMiner [26] both extract the positive association rules in the form
of A ⇒ B, indicating that, within a function, when the program
element A appears, the element B should also appear. Accordingly,
if a function implementation violates the rule (i.e., containing A
without B), a potential bug is expected. Similar techniques have
been proposed to detect potential object misuse bugs [53] and miss-
ing program elements following control structures [7], and to infer
the correct usage of the APIs [60]. All these approaches target on a
group of ad-joint program elements that have a mutually supportive
relationship, i.e., positive associations.

However, we observed that, in practice, some implicit program-
ming patterns appear as negative associations in the form of A ⇒
¬B. That is, when A appears, B should not appear, and vice versa.
In this sense, a negative rule reflects the mutually suppressing or
conflicting relationship between A and B. Violating negative rules
may also result in serious bugs. It is usually impossible to manually
identify all negative rules from a project, especially a large-scale

411

https://doi.org/10.1145/3236024.3236032
https://doi.org/10.1145/3236024.3236032

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

one like the Linux kernel. But to the best of our knowledge, no
existing approaches can automatically extract negative rules from
source code for bug detection. The state-of-the-art mining-based
solutions only extract positive programming rules. Compared with
the positive rules that indicate frequent patterns, a negative rule is
typically more implicit and the corresponding bugs are more insidi-
ous. For example, the bug in Figure 1 has existed in Linux kernel for
more than 10 years (i.e., presented in Linux-2.6.4 or earlier). Hence,
it is both challenging and urgent to develop an effective approach
to automatically extracting implicit negative programming rules to
detect related bugs and vulnerabilities.

In this paper, we propose NAR-Miner to address the above issue.
The overarching idea is to infer interesting negative association
rules through infrequent pattern mining and to further detect the
corresponding violations as potential program bugs. Essentially,
due to the nature of negative rules [56], directly mining infrequent
patterns to extract negative rules will produce a huge number of
rules. We call this the rule explosion problem. Most of these rules
are uninteresting for bug detection, i.e., they do not embody any
real application logic and violations of them do not lead to bugs
or program quality issues. Hence, the detection results based on
these uninteresting rules will produce unacceptable false positives.
For example, directly applying an existing negative rule mining
algorithm [43, 56, 61] to Linux kernel will extract up to hundreds of
thousands of rules and millions of violations. That became impos-
sible for manual audit under limited human resource. To address
the rule explosion problem, we propose a semantics-constrained
negative association programming rule mining algorithm to avoid
generating excessive uninteresting rules as far as possible. More-
over, we utilize the information entropy to identify the general
functions that are prone to result in uninteresting rules. This step
helps to further filter potentially uninteresting rules. As a result,
NAR-Miner can effectively mitigate the rule explosion problem and
gain desirable interesting rules to detect potential bugs.

We implement a prototype of NAR-Miner and first evaluate it on
a Linux kernel (v4.12-rc6). The experiments show that, semantics-
constrained negative rule mining and information entropy based
rule filtering perform well on reducing the number of uninteresting
rules. That is, it reduces 46% uninteresting rules (i.e., from 198 to
107 among the 200 top ranked negative rules). Especially, it achieves
a true positive rate of 62% among the top ranked 50 negative rules.
NAR-Miner reports 356 violations of the top ranked 200 rules. We
manually inspect the results and find 23 suspicious bugs and dozens
of quality problems. We report the suspicious bugs to Linux ker-
nel maintainers. 17 of them have been confirmed as real bugs and
the corresponding patches have been merged into the latest ver-
sion (e.g., v4.16). We further apply NAR-Miner to PostgreSQL v10.3,
OpenSSL v1.1.1, and FFmpeg v3.4.2. From the top ranked rules and
violations, we manually identify six suspicious bugs, all of which
have been confirmed and fixed by the corresponding maintainers.

This paper makes the following main contributions:

• To the best of our knowledge, our work is the first one that fo-
cuses on extracting negative programming rules from source
code to detect bugs. It extends the capability of the mining-
based bug detection technique.

• We propose an approach to mitigating the rule explosion
problem by introducing program semantics in rule mining
and using information entropy to identify the general func-
tions, which can effectively extract desirable interesting neg-
ative programming rules for bug detection.

• We implement a prototype of NAR-Miner targeting on real-
world large-scale software projects. We apply the tool to
four large-scale systems (i.e., the Linux kernel, PostgreSQL,
OpenSSL and FFmpeg) and find a considerable number of
bugs, among which 23 have been confirmed.

2 MOTIVATING EXAMPLE
We use a simplified code snippet from Linux kernel (v4.12-rc6) to
motivate our method. In Figure 1, the function lapbeth_new_device
calls alloc_netdev at line 5 to allocate a chunk of memory for a
network device. Then at line 8, in inlined function netdev_priv is
invoked to get the starting address of the private data and store it to
variable lapbeth. As shown in Figure 1, lapbeth points to a location
inside the previously allocated memory. If the device registration
fails at line 11, the memory chunk for the device will be released.
The allocated memory pointed by variable ndev is first freed at
line 21 and then the private data is freed at line 23. The critical
operations in the execution sequence from memory allocation to
free are highlighted in the code snippet and the corresponding
memory states are depicted accordingly. We use red horizontal
lines to describe freeing memory via free_netdev and blue vertical
lines for kfree. With the illustration, it is easy to tell there is a double
free bug in the code.

Traditional static detection methods are difficult to discover this
bug and other similar bugs in a large-scale system (e.g., Linux ker-
nel), as the required bug patterns or rules are application-specific
and hard to collect. Existing mining based approaches cannot re-
port the bug either. For example, the state-of-the-art approach
AntMiner [26] extracts the positive association rules and checks
the violations. From the Linux kernel, we discover 77 appearances
of the pair {alloc_netdev, free_netdev} among 90 invocations of al-
loc_netdev (85.6%). And only one invocation of free_netdev is fol-
lowed by kfree among its 533 call instances (0.2%). AntMiner treats
{alloc_netdev} ⇒ {free_netdev} as a positive rule with a minimum
confidence threshold as 85% [26]. However, the code in Figure 1
calls both alloc_netdev and free_netdev, and thus is a support, in-
stead of a violation, of the rule. Hence, the aforementioned bug
is undiscovered. Besides, due to the low confidence (0.2% « 85%),
AntMiner does not treat {free_netdev} ⇒ {kfree} as a valid rule (i.e.,
filtered out by the minimum confidence threshold). As a result,
AntMiner cannot report “kfree follows free_netdev” as a bug.

From the above analysis, it is quite difficult or even impossible
to detect the bug in Figure 1 through analyzing the ad-joint rela-
tionships among elements. In essence, the two program elements
(i.e., free_netdev and kfree) closely related to the bug are negatively
correlated. This knowledge can be discovered by a statistic analysis.
Specifically, we find that in most cases (about 99.8%) within the
Linux kernel, free_netdev is not followed by kfree, we learn that
the developers are mostly aware of the case in which calling kfree
after free_netdev may be unnecessary or cause serious problems.

412

NAR-Miner: Discovering Negative Association Rules ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

1 //file: linux-v4.12-rc6/drivers/net/wan/lapbether.c
2 static int lapbeth_new_device(struct net_device *dev) {
3 struct net_device *ndev; struct lapbethdev *lapbeth;
4 /* alloc_netdev: allocate memory with size (sizeof(net_device) +

ALIGN + sizeof(*lapbeth)) */
5 ndev = alloc_netdev(sizeof(*lapbeth), "lapb%d",

NET_NAME_UNKNOWN, lapbeth_setup);
6 if (!ndev)
7 goto out;
8 lapbeth = netdev_priv(ndev);
9 ...
10 rc = -EIO;
11 if (register_netdevice(ndev))
12 goto fail;
13
14 list_add_rcu(&lapbeth->node, &lapbeth_devices);
15 rc = 0;
16 out:
17 return rc;
18 fail:
19 dev_put(dev);
20 /* free_netdev: frees the memory allocated in alloc_netdev,

including the memory for private data */
21 free_netdev(ndev);
22 /* the memory is freed again, resulting in double free */
23 kfree(lapbeth);
24 goto out;
25 }

26 static inline void *netdev_priv(const struct net_device *dev) {
27 return (char*)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
28 }

sizeof(net_device) ALIGN sizeof(*lapbeth)

ndev

ndev lapbeth

ndev lapbeth

ndev lapbeth

Figure 1: A bug in Linux kernel, violating the rule: {free_netdev} ⇒ ¬{kfree}.

Source

Code

Preparing

Data
Transaction

Database
Mining

Inferring

Rules

Detecting

Violations

Function Entropy

Bugs
Negative Rules

Frequent and Infrequent Itemsets

Figure 2: A high-level overview of NAR-Miner.

Inspired by that, relatively small amount of paired occurrences can
be considered as anomalies.

We leverage infrequent itemset mining algorithms to infer the
negative association rules and apply the rules to detect their viola-
tions (e.g., the one in Figure 1). During the mining and detection, we
also take the program semantics (e.g., data flow information) into
consideration. In our example, kfree shares data with free_netdev
and their appearance together is treated as an infrequent pattern.
Therefore, we infer a negative rule {free_netdev}⇒ ¬ {kfree}. Ap-
plying the rule to our example discovers the corresponding bug
(bug 12# in Table 2)

3 OUR APPROACH
3.1 Overview
We present NAR-Miner, targeting on detecting bugs where a pro-
gram contains some operations (e.g. two function calls) that are
deemed not to appear together without requiring any prior knowl-
edge. The high-level idea of NAR-Miner is to employ the data mining

technique to infer negative association rules from source code and
detect their violations.

Figure 2 presents the overview of NAR-Miner. It first prepares
data for the mining phase. Similar to most of mining-based methods
[6, 25, 26, 49, 60], we only extract programming rules from each
individual function, i.e., intra-procedural, to avoid overcomplicated
analysis. Program elements as well as their semantic relationships
within each function are identified and transformed into a transac-
tion, which is then stored in a database (called transaction database).
Next, it mines frequent and infrequent itemsets, which denote sets
of program elements, from the database. Then it infers negative
association rules from the mined itemsets and leverages the confi-
dence and the entropy of functions to rank the rules automatically.
Finally, it detects the violations of the inferred rules and reports
the top ranked ones as potential bugs for auditing.

3.2 Challenge
Previous studies [43, 56, 61] have shown that only a small number of
patterns that exhibit negative association relationship are interest-
ing. Their techniques of identifying interesting rules via computing
their support and confidence cannot be directly adopted to code
mining. The program elements constructing an interesting negative
association rules should suppress each other in their semantics, not
just infrequently appearing together. Our empirical study shows
that directly applying the algorithm proposed by Wu et al. [56] on
the transaction database extracted from the Linux kernel generates
183,712 negative association rules (see §4.2.2) while 99% of them are
uninteresting in a sampling analysis. Up to 309,689 violations are
reported, which makes human auditing impossible. We call this the
rule explosion problem and recognize it as the main challenge
of extracting negative association rules. We attribute the following
two aspects as the root cause of rule explosion.

413

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

(1) Existing negative association rule mining approaches [43, 45,
56, 61] mainly target on market basket, medical diagnosis, pro-
tein sequences, etc.. For such kinds of data, any two elements
from a mining unit (e.g., a shopping receipt) do not have any
particular relationship except belonging to the same unit. In
other words, the elements of a mining unit are homogeneous.
However, between program elements, there are often various
semantic relationships, e.g., data dependence. Ignoring such
relationships may result in many uninteresting rules consisting
of semantically independent elements, which actually do not
suppress each other but just infrequently appear together.

(2) A large scale project usually contains a certain number of
general-purpose APIs that can be used in almost all program-
ming contexts, such as printk and isalpha in Linux. They can be
coincidentally paired with other operations to form association
rules. Even considering strong semantic relationships (e.g., data
dependence) during mining, these APIs can still result in many
negative uninteresting rules. Actually, the more general an API
is , the less mutual suppression it has with other operations.

Based on above insights, we mitigate the rule explosion problem
as follows. (1) Considering the essence of program elements as
discussed above, we focus rule mining on the program elements
that have strong semantic relationships (e.g., data dependence) to
reduce uninteresting rules as far as possible. (2) We employ the
information entropy to measure the generality of APIs and use it
to rank mined candidate negative rules. The uninteresting rules
involving high-generality APIs will be excluded from the final audit.

3.3 Preparing Data
NAR-Miner transforms the program elements into transactions and
store them to a database. In this paper, we focus on two kinds of
program elements: function calls and condition checks, because
many bugs result from function or condition misuses [1, 6, 21, 26,
33, 38, 47, 57]. As discussed earlier, we aim to extract negative
association rules from transactions, whose elements have a strong
semantic relationship. We define two elements to have a strong
semantic relationship if there is a data correlation between them,
including data dependence and data share [7]. In details, given
two statements s1 and s2, if either s2 uses a value defined in s1
(i.e., data dependence) or they both appear on the same execution
path and use the same non-constant value (i.e., data share), we say
they are strongly semantically related. The semantic relationships
of program elements is identified via data flow analysis [3, 15].
NAR-Miner associates the semantic relationships with program
elements and stores them into the database for mining.

The preprocessor of NAR-Miner is built on top of the GCC (v4.8.2)
frontend, which provides control flow graphs and intermediate
representations in SSA form [12] for data flow analysis. Figure 3(a)
presents a piece of code and Figure 3(b) shows the corresponding
intermediate representation in SSA form. NAR-Miner can tell that
is_valid, foo and bar are data dependent on read2 at line 2. As
is_valid and foo are within the same execution path, they have a
data share relationship. Because there is no path between foo and
bar, they are not considered to be semantically related.

To ease the mining phase, the intermediate representation is then
converted into a transaction database. Every function definition is

mapped to a transaction. A transaction consists of two parts: a bag
of program elements and a set of semantic relations among these
elements. Each program element is normalized before dumped to
the database. A function call is represented with the function name
without the arguments; and variables in a conditional statement are
renamed with "RET" if they keep return values of some functions
or with their data types in other cases as done in many mining
methods [6, 7, 25, 26, 57, 58]. For example, the condition expression
in Figure 3 is normalized to “RET == 0”. The semantic relationship
between two program elements is represented as a tuple in the trans-
action. For example, the tuple (foo, is_valid) says that functions foo
and is_valid have some semantic relation. Figure 3(c) presents the
semantic relationships for the code snippet, where a node denotes
a program element and an edge indicates the relationship (for
data dependence and for data share).

We map each program element to a unique integer and thus
mining is applied on the integer set to improve performance, as a
large number of string equivalence comparison is time-consuming.

3.4 Extracting Frequent & Infrequent Itemsets
A rarely invoked program element always infrequently appears
together with other program elements and will result in a large
number of negative patterns. However, such patterns are meaning-
less in statistics [56]. Hence, we focus on mining negative patterns
whose elements are frequent alone but infrequent together. For a
negative ruleA ⇒ ¬B, its antecedent (i.e.,A) and consequent (i.e., B)
are frequent, but the combination of them (i.e., (A∪B)) is infrequent.
In this section, we present our algorithm on extracting interesting
frequent and infrequent itemsets, and will explain how to generate
negative rules in the next section.

Existing algorithms extracting frequent and infrequent itemsets
only rely on the occurrences of itemsets in the transaction database
[43, 56, 61]. None of them considers the semantic relations among
elements. Directly applying them on the database generated in §3.3
will result in a large number of uninteresting rules. As far as we
know, there is no infrequent itemset mining algorithm that can
be directly applied in our work. To address this issue, we design
a semantics-constrained mining algorithm, which focuses on ex-
tracting strong semantics-related itemsets. Elements in a strong
semantics-related itemset are all related to each other in semantics,
e.g, have data dependence or data share relationships.

We design our algorithm based on the well-known Apriori al-
gorithm [2], which applies a bottom-up approach to generate rel-
atively large candidate itemsets by joining smaller frequent ones
together. The principle behind the bottom-up approach is the Apri-
ori property: any subset of a frequent itemset is also frequent. In
our cases, any subset of a strong semantics-related itemset is also
strong semantics-related, because any two elements in the subset
must be related in semantics. Hence, strong semantics-related item-
set also complies with the Apriori property and can be mined in a
bottom-up manner.

Our algorithm ofmining frequent and infrequent strong semantics-
related itemset is shown in Algorithm 1. Besides the transaction
database, it requires users to specify two parameters: the minimum
frequency supportmf s and the maximum infrequency supportmis .
An itemset is considered to be frequent if its support is larger than

414

NAR-Miner: Discovering Negative Association Rules ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

1. str = read1();
2. str = read2();
3. valid = is_valid(str);
4. if (valid) {
5. foo(str);
6. } else {
7. bar(str);
8. }

(a) Source Code.

1. str_1 = read1();
2. str_2 = read2();
3. valid = is_valid(str_2);
4. if (valid)) {
5. foo(str_2);
6. } else if {
7. bar(str_2);
8. }

(b) Intermediate representation in SSA.

read1
read2

is_valid

foo bar RET == 0
(c) Transaction.

Figure 3: Source code transformation.

Algorithm 1 Extract Frequent and Infrequent Itemsets

1: procedure mine_itemsets(DB,mf s,mis)
2: FIs = �, I Is = �;
3: L1 = { f requent 1−itemsets};
4: for (k = 2; Lk−1 , �; k++) do
5: Sk = Lk−1 Z Lk−1;
6: Sk = prune(Sk);
7: for (each itemset I in Sk) do
8: support(I) = count_support(DB, I);
9: if (support(I) ≥ mf s) then
10: Lk = Lk∪ {I };
11: else if (0 < support(I) ≤ mis) then
12: Nk = Nk∪ {I };
13: end if
14: end for
15: FIs = FIs ∪ Lk , I Is = I Is ∪ Nk ;
16: end for
17: output FIs and I Is;
18: end procedure
19: procedure count_support(DB, I)
20: counter = 0;
21: for (each transaction t in DB) do
22: if (I ⊆ t .elements ∧ relations(I) ⊆ t .relations) then
23: counter = counter + 1;
24: end if
25: end for
26: return counter ;
27: end procedure

or equal tomf s , and an itemset is infrequent if its support is less
than or equal tomis . The output of the algorithm is all frequent
itemsets (FIs) and infrequent itemsets (I Is) of interest.

At the beginning, the algorithm scans the transaction database
to find all frequent 1-itemsets (line 3). Then it attempts to discover
frequent and infrequent k-itemsets from frequent (k − 1)-itemsets
(lines 4 ∼ 14). A k-itemset contains k items. First, it generates candi-
date k-itemsets of interest by joining frequent (k − 1)-itemsets (see
line 5). Two (k − 1)-itemsets are joinable if they have k-2 common
items. Suppose that two joinable (k-1)-itemsets are {i1, ..., ik−2, ik−1}
and {i1, ..., ik−2, ik }, the join result is a k-itemset {i1, ..., ik−2, ik−1,
ik }. Second, the algorithm leverages the Apriori property to prune
k-itemsets that have infrequent sub-itemsets (line 6). After that,
function count_support is called to compute the support of every
k-itemset (line 8). The itemset is inserted into Lk (line 10), a set of

Algorithm 2 Generate Negative Association Rules

1: procedure generate_rules(FIs, I Is,min_conf)
2: for (each itemset I in I Is) do
3: A =min_support_subset(I);
4: B = I −A;
5: R = A ⇒ ¬B;
6: conf idence(R) = 1 − support(I)/support(A);
7: if (conf idence(R) < min_conf) then
8: continue;
9: end if
10: interestinдness(R) = conf idence(R)

entropy(I) ;
11: NARs = NARs ∪ R;
12: end for
13: sort NARs by their interestingness;
14: return NARs;
15: end procedure

frequent k-itemsets, if its support is not less thanmf s; otherwise,
if its support is not larger than mis , it is inserted into the set of
infrequent k-itemsets Nk (line 12). It should be noted that, itemsets
whose supports are 0 are naturally ignored. Lk and Nk are finally
merged to FIs and I Is (line 15), respectively. The frequent itemset
Lk is then used to generate larger itemsets Lk+1 and Nk+1. The
algorithm terminates when Lk is empty for certain k , and outputs
the collected frequent/infrequent itemsets (line 17).

The function count_support scans the database to compute the
support of an itemset I (lines 19 ∼ 27). The counter will increase by
1 if a transaction supports I (line 23). A transaction supports I if and
only if it contains all items in I as well as all possible relations among
the included items (denoted as relations(I)). For example, the trans-
action in Figure 3 supports the itemset {foo, is_valid}, because it
includes not only both the two items foo and is_valid, but also the
semantic relation between them, i.e., the tuple (foo, is_valid). How-
ever, the transaction is not a support of itemset {foo, bar} because it
does not contains the tuple (foo, bar).

In order to mine rules like {kfree} ⇒ ¬{kfree}, we also extract
2-itemsets like {д,д}, where д is frequently called but two call
instances of it in the same function are rarely related in semantics.
This helps NAR-Miner find the bug 14# in Table 2 (see §4.2.3).

3.5 Generating Negative Association Rules
A negative association rule A ⇒ ¬B implies that two frequent
itemsets A and B rarely appear in the same transaction. That is,
(A ∪ B) is infrequent. In fact, the antecedent and consequent of a

415

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

rule are actually a disjoint partition of an infrequent itemset. One
straightforward negative association rule generation method is to
find all pairs like < A,B > from an infrequent itemset I , where
A ∪ B = I and A ∩ B = ∅. It uses the confidence of rule A ⇒ ¬B to
determine its infrequency. The confidence is defined of as follows:

conf idence(A ⇒ ¬B) = support(A ∪ ¬B)
support(A) (1)

where, support(A ∪ ¬B) is the number of transactions that sup-
port A ∪ ¬B, supporting A but not A ∪ B. Consequently, we have
support(A ∪ ¬B) = support(A) − support(A ∪ B) = support(A) −
support(I), where I = A∪ B. Hence, equation 1 can be rewritten to:

conf idence(A ⇒ ¬B) = 1 − support(I)
support(A) (2)

From an infrequent itemset I with n elements (n ≥ 2), at most
2(n−1) negative association rules can be generated by directly ap-
plying the above method. However, violations to them are all the
same, i.e., the transactions that support the itemset I . Hence, it is
enough to keep track of only one of them in the bug detection ori-
ented application. Note that, from the perspective of programming,
the rule A ⇒ ¬B means that elements in B should not appear in
contexts that include A. Its violations are always false positives if
the reversed rule B ⇒ ¬A is not interesting, because the existence
of B is not meant to reject A. Inspired by that, in almost all cases, if
we expect transactions that support the infrequent itemset I to be
real bugs, all the negative association rules derived from I should
be interesting. Hence, we can select the rule with the lowest confi-
dence to represent these rules. Taking confidence as the metric, the
other rules will be interesting if it is interesting.

The logic in real-world programming is often very complex.
Some mined rules may not be applicable in programming prac-
tice. Violations detected according to them are usually false alarms.
A general methodology is to rank the mined rules such that the
interesting rules are top ranked and uninteresting rules are bot-
tom ranked. Existing works mainly rank rules according to their
confidence (high confidence rules are top ranked). However, the
confidence only reflects the (negative/positive) correlations among
several limited elements. In fact, the interestingness of a program-
ming rule is also related to whether its elements are concentrated
in certain contexts. That is, if the calling contexts of an element
trend to be more homogeneous, the rules composed by it is more
likely to be an interesting one. Otherwise, if the element is used
in quite different contexts, it is more general and is more likely to
appear together with various elements. In this paper, we use the
generality to indicate how different the contexts for an element
are. In general, rules consist of elements with high generalities are
more likely to be uninteresting ones.

We introduce the information entropy to quantitatively mea-
sure the generality of elements. For a call instance of a program
element д, we describe its context by both elements д depends on
and elements that depend on д. We extract such elements in all call
instances of д and put them into a bag. The information entropy of
the bag of д reflects how different the call instances are and can be
used to measure the generality of д. The information entropy for

the bag of д (denoted as H (д)) can be computed by Equation 3:

H (д) = 1
loд10(N)

∑
pi × loд2(pi) (3)

where pi is the frequency of the i-th element in the bag; N is the
number of call instances of д. The entropy for an itemset is a sum
of the entropy for each element.

With the generality of each program element, the interestingness
of a negative association rule R can be measured as:

interestinдness(R) = conf idence(R)∑
H (дi)

(4)

where H (дi) is the information entropy of element дi .
Our method to generate negative association rules is formalized

in Algorithm 2. The algorithm takes the frequent itemset FIs and
infrequent itemsets I Is extracted in §3.4 as well as a user specified
thresholdmin_conf as inputs. It returns the set of negative asso-
ciation rules NARs . It first generates the representative rule for
each infrequent itemset I that has the lowest confidence (lines 3
∼ 5). From Equation 2, the smaller the support of A is, the lower
the confidence of A ⇒ ¬B becomes. Hence, we select the subset
of I whose support is smallest to generate the representative rule.
Then, the confidence of the rule is computed (line 6) and checked
against the thresholdmin_conf (line 7). The information entropy is
employed to measure the interestingness of a potentially interest-
ing rule (line 10). Finally, the negative association rules are sorted
in the descending order of their interestingness.

3.6 Detecting Violations
The violations of a negative association rule R : A ⇒ ¬B are
those transactions that support itemset A ∪ B. A straightforward
approach is to directly scan the database to find all transactions
that contain both itemsets A and B. However, such an enumerating
approach is time-consuming, especially for databases with hundred
of thousands of transactions. To speed up the detection process, we
adopt the trick used in PR-Miner [25]. When generating frequent
and infrequent itemsets, NAR-Miner also collects transactions that
support them. We use supporters(I) to indicate all transactions that
support an itemset I . Then, the set of violations of the negative
association rule R is exactly supporters(A ∪ B).

4 EVALUATION
4.1 Experiment Setup
We implement NAR-Miner as a prototype system to detect bugs in
large-scale C programs. We evaluate NAR-Miner on the well known
Linux kernel (v4.12-rc6). The Linux kernel has been widely used
as the target of evaluation (TOE) in mining based bug detection
methods [6, 14, 20, 20, 22, 24–26, 30, 42, 46–48, 57, 60]. The major
reason for choosing the Linux kernel as our target is that we want
to examine the effectiveness of our method by detecting some real
bugs that were not found in previous work. Linux-v4.12-rc6 was
the latest version at the experiment time. It contains 24,919 C files
and 19,295 header files, including 376,680 functions and 15,501,651
lines of code (LoC).

To Verify whether NAR-Miner can be applied for bug detection
in other systems, we also select three popular large-scale C systems
from different domains: PostgreSQL v10.3, OpenSSL v1.1.1 and

416

NAR-Miner: Discovering Negative Association Rules ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

FFmpeg v3.4.2. PostgreSQL is an open source database, OpenSSL is
a library for secure communications, and FFmpeg is a framework for
encoding/decoding multimedia files. Many bug detection methods
select them as the targets of evaluations [19, 20, 25, 35, 57].

NAR-Miner requires to specify three parameters: (1) the min-
imum support threshold of frequent itemsets (i.e., mf s), (2) the
maximum support threshold of infrequent itemsets (i.e.,mis), and
(3) the minimum confidence threshold of interesting negative rules
(i.e.,min_conf). Generally, an itemset will be more interesting if it
is either a frequent itemset with a higher support or an infrequent
one with a lower support. Besides, a higher minimum confidence
can further filter out uninteresting negative rules. In practice, dif-
ferent parameter settings may result in either failing to report some
real bugs or producing too many false alarms. Users can tune these
parameters according to the detection strategies, conservatively or
aggressively. To determine reasonable parameters, we perform an
empirical study as done in [6, 25, 26, 49, 60]. Specifically, with a sam-
pling analysis, a parameter setting is considered acceptable when
more than half of the top 10 ranked negative rules are interesting
ones. In this study, we setmf s to be 15,mis to be 5 andmin_conf
to be 85%. In our experiments, the default parameter setting works
well against the four different TOEs (see §4.2 and §4.3).

4.2 Detecting Bugs in the Linux Kernel
4.2.1 Preprocessing the Source Code. NAR-Miner took about 77
minutes to parse the kernel source code and to transform it into a
transaction database. Among all the function definitions, there are
333,248 functions contain some program elements (i.e., function
calls or condition checks). After the transformation, each function
definition is mapped to a transaction in the database. The data-
base includes 227,246 different elements, where each element corre-
sponds to a function call or a condition check. Among them, 6,203
are frequent elements that appear in more thanmf s transactions.

4.2.2 Effectiveness on Mining Negative Rules. To evaluate the ef-
fectiveness of our method that incorporates both the semantics-
constrained rule mining and the information entropy based rule
ranking, we conduct three experiments: NAR-Miner−−, NAR-
Miner−, NAR-Miner. The methodology adopted in each experi-
ment is explained below:
a) NAR-Miner−−: The mining algorithm does not consider se-

mantic relations among items and the mined rules are ranked
according to their confidence;

b) NAR-Miner−: Based on NAR-Miner−−, the semantic relations
among items are used as constraints to filter out weak semantics-
related itemsets;

c) NAR-Miner: Based on NAR-Miner−, we introduce the infor-
mation entropy to measure the interestingness of negative asso-
ciation programming rules. This experiment evaluates the full
capability of NAR-Miner.
We show the experiments results in Table 1, with the number

of frequent itemsets (#FIs), infrequent itemsets (#IIs), number of in-
ferred negative association rules, number of detected violations and
the time cost for mining, ranking and detection (Time) in seconds.

Comparing the results for NAR-Miner−− and NAR-Miner− or
NAR-Miner, we observe that adopting the semantics-constrained
mining reduces the total number of rules and violations in an order

of magnitude (about 88% reduction for #All columns). The rule
explosion problem is mitigated to a large extent.

Due to the limited time, we manually examine the 200 top ranked
negative association rules in each experiment. The rules are ranked
by their confidence in NAR-Miner−− and NAR-Miner−, whereas by
their interestingness in NAR-Miner. A negative association rule is
marked as “True” if it is really interesting and violating it will result
in bugs or quality problems. For example, {free_netdev} ⇒ ¬ {kfree}
is an interesting (“True”) rule because a violation to it will result
in a potential double free bug such as the one discussed in §2. In
NAR-Miner−−, only 2 among the top 200 rules are considered
as interesting rules. In other words, 99% of them leads to false
alarms for violation detection. The main reason for this low rate of
interesting rules is that the program elements consisting of such
rules are usually independent of each other in semantics. For below
example, though ranked number one with a confidence of 99.96%
in NAR-Miner−−, the rule {static_key_false} ⇒ ¬ {atomic_read} is
uninteresting, because the two functions take entirely independent
variables as actual arguments in the program that contains both of
them, and they do not really suppress each other.

1 static inline void load_mm_cr4(struct mm_struct *mm) {
2 if (static_key_false(&rdpmc_always_available) ||
3 atomic_read(&mm->context.perf_rdpmc_allowed))

Introducing semantics-constrained mining reduces the false pos-
itive rate to 90.5% in NAR-Miner−, which, however, is still too high
to be acceptable in practice. While the inferred rules have all in-
volved program elements semantically related, some elements are
very generic and can be used in various contexts where violations
do not lead to bugs. For example, function iowrite32 is data depen-
dent on readl when they appear together, only one occurrence in
Linux kernel, and a rule {iowrite32} ⇒ ¬ {readl} is inferred. The
rule is ranked top 8th with a confidence of 99.94% in NAR-Miner−
but still uninteresting because both functions are used in various
manners and a combination of them will not result in any bugs.

NAR-Miner employs the information entropy to measure general-
ities of functions. It is 5.9 and 4.6 for iowrite32 and readl, respectively.
The interestingness of the rule {iowrite32}⇒ ¬ {readl} is 9.5%, small
enough to be lowly ranked. In this way, most uninteresting rules
are assigned low interestingness values and thus ranked at bottom,
meanwhile potentially interesting ones are assigned with relatively
high interestingness values and ranked at the top. In NAR-Miner,
93 out of the top 200 negative rules are marked with “True”, nearly
5 times of the number in NAR-Miner−. In particular, there are 31
“True” negative rules among the first 50 ones. The true positive
rate is 62%. That’s, we can find an interesting rule within less than
two manual audits, which is acceptable in practical bug detection
against real-world large-scale systems such as the Linux kernel.

We also inspect the violations of the top 200 inferred rules. From
the columns Violations and #Bugs in Table 1, we observe more
reported violations and confirmed bugs due to the application of
semantics-constrained mining and information entropy based rank-
ing, which eventually enhances the ability of NAR-Miner, enabling
it to infer much more interesting rules (columns #True and TP Rate).

4.2.3 Detecting Violations. Against the 21,166 negative association
rules extracted by NAR-Miner, 37,453 violations are detected. We
manually inspect the reported negative association rules and their

417

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

Table 1: Results of the three experiments.

Experiment #FIs #IIs Negative Association Rules Violations Time
#All #Reviewed #True TP Rate #All #Reviewed #Bugs

NAR-Miner−− 266,449 201,381 183,712 200 2 1% 309,689 231 0 24s
NAR-Miner− 16,323 24,040 21,166 200 19 9.5% 37,453 262 1 13s
NAR-Miner 16,323 24,040 21,166 200 93 46.5% 37,453 356 17 16s

Table 2: Previously unknown bugs in Linux-v4.12-rc6 detected by NAR-Miner.

ID Function Violated Rule Rule Ranking PatchID
NAR-Miner−− NAR-Miner− NAR-Miner

1 hisi_sas_shost_alloc
{scsi_host_alloc} ⇒ ¬{kfree} NA 12,058 81

9887619
2 pm8001_pci_probe 9887647
3 mvs_pci_init 9887693
4 xfs_test_remount_options {kmem_zalloc} ⇒ ¬{kfree} 67,667 5,924 87 9887959
5 mxs_lradc_ts_probe {devm_ioremap} ⇒ ¬{IS_ERR} NA 1,879 199 9888123
6 ccp_init_dm_workarea

{dma_map_single} ⇒ ¬{RET == 0} NA 1,303 39
9888311

7 qla26xx_dport_diagnostics 9888341
8 flctl_dma_fifo0_transfer 9888435
9 kexec_calculate_store_digests {crypto_alloc_shash} => ¬{kfree} NA 2,870 111 9890383
10 vpd_sections_init {memremap} ⇒ ¬{iounmap} 180525 17,539 155 9894697
11 vpd_section_init
12 lapbeth_new_device {free_netdev} ⇒ ¬{kfree} NA 118 79 10031525
13 ubi_scan_fastmap {kmem_cache_alloc} ⇒ ¬{kfree} NA 2,207 42 10031421
14 psb_mmu_pt_unmap_unlock {kunmap_atomic} ⇒ ¬{kunmap_atomic} NA 1,651 2 10031217
15 lan9303_probe_reset_gpio {devm_gpiod_get_optional} ⇒ ¬{RET == 0} NA 7,382 127 10054823
16 cpcap_adc_probe {platform_get_irq_byname} ⇒ ¬{RET == 0} NA 5,705 159 10054831
17 esrt_sysfs_init {memremap} ⇒ ¬{kfree} NA 9835 100 10031539

violations according to the ranking of the rules. To gain maximum
benefit from the detection, we select the top ranked rules for review
as violations of them are more likely to be real bugs. We examine
the 200 top ranked negative association rules and corresponding
356 violations (see the last row in Table 1) within one person day.
We find 23 suspicious bugs and dozens of program quality prob-
lems such as redundant condition checks and computations. As
Linux kernel maintainers often ignore the quality problems, we
only submit patches of the 23 suspicious bugs to the Linux kernel
maintainers. Up to now, 17 of these patches have been confirmed
and accepted by the kernel maintainers.

The confirmed bugs are listed in Table 2, with the functions that
contain the bugs (Function), the rules they violate (Violated Rule)
and the rule ranking in the three experiments. The last column
shows the patch IDs to the bugs and our patches at the PatchWork
site. Among these found bugs, six (2#, 3#, 8#, 12#, 13#, and 14#)
have presented in kernel 2.6 and two (3# and 12#) even have been
latent for more than 10 years.

These bugs violate 12 negative association rules in total. If ranked
by confidence, only one of them is within the top 200 rules (12# in
column NAR-Miner−). But ranking the rules with the information
entropy makes all of them in top 200 (NAR-Miner). This observation
illustrates that introducing information entropy into ranking is sig-
nificantly useful in highlighting interesting rules. We also observe
that only 2 of these rules are extracted in NAR-Miner−− (“NA” for
no hit) and the other rules are all missing. For example, the rule

{free_netdev} ⇒ ¬ {kfree} (12#) is missing because there are 106
functions calling both free_netdev and kfree. Without considering
semantic relations, the support of the itemset {free_netdev, kfree} is
106, which is much higher than the predefined thresholdmis = 5.
As a result, it will not be taken as an infrequent itemset and thus
the negative association rule cannot be inferred. However, with
semantics-constrained mining and information entropy, NAR-Miner
successfully infers the rule and discovers corresponding bugs (Fig-
ure 1). Therefore, we claim that semantics-constrained mining can
help reduce not only false positives but also false negatives.

4.2.4 Comparison with Positive Rule Mining Based Methods. In
practice, certain bugs violating a negative rule may also violate a
corresponding positive rule. Therefore, such bugs are supposed to
be detected by both negative and positive rule mining based meth-
ods. We investigate to see if such cases occur commonly. We choose
the 17 bugs in Table 2 as a base line, conduct another experiment
that infers positive association rules from the 266,449 frequent item-
sets mined in §4.2.2 with the same settings formf s andmin_conf
with NAR-Miner, and then detects violations of the rules, as done
in [25] and [26]. A manual inspection shows three out of the 17
bugs are detected (2#, 3# and 15# in Table 2), whereas the other 14
bugs (about 82.4%) are missing. We then augment the positive rule
mining based approach with the semantics-constrained mining, i.e.,
taking the data relations among program elements into account.
Two more bugs (5# and 14#) are discovered, but there are still 12
bugs (about 70.6%) are undetected. Consequently, we claim that

418

NAR-Miner: Discovering Negative Association Rules ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

while the semantics-constrained mining is able to help the positive
rule mining based approaches detect more bugs, the negative rule
mining based approach can exclusively discover a lot of bugs that
positive rule mining based approaches cannot.

4.3 Detecting Bugs in Other Systems
NAR-Miner is further applied to PostgreSQL v10.3, OpenSSL v1.1.1
and FFmpeg v3.4.2. NAR-Miner extracted 690, 382 and 335 negative
rules from PostgreSQL, OpenSSL and FFmpeg, respectively. We
manually inspect the top ranked negative rules (no more than 50)
and their violations in each system as done in §4.2. As a result, we
identify six violations (two per target), and have reported them to
the corresponding communities. Up to now, all of the six suspected
bugs have been confirmed and fixed by the corresponding system
maintainers. The details can be found in the bug reports for Post-
greSQL from the mailing list [41] with IDs #15104 and #15105, for
OpenSSL from the issue list [40] with IDs #5567 and #5568, and
for FFmpeg from the mailing list [39] with IDs #7074 and #7075.
The experiments demonstrate that NAR-Miner is not limited to a
specific target system (e.g., Linux kernel), but can be used to find
real bugs in various large-scale C systems.

4.4 Case Study
In this section, we illustrate the capability of NAR-Miner with com-
parison with positive association rule (PAR) mining based methods
on the confirmed bug #15105 In PostgreSQL.

In PostgreSQL, the function OpenTransientFile allocates a file
descriptor and stores it to a globally maintained list of allocated
files. The return descriptor must be released with CloseTransientFile,
which removes the descriptor from the list before truly closing it
with close. Directly using close will make the list keep the released
descriptors and may result in use-after-free bugs. Statistically, in
PostgreSQL v10.3, OpenTransientFile is invoked within 28 functions.
In 27 of the functions its return value is passed to CloseTransientFile,
but in 1 function its return value is directly passed to close, resulting
in a negative association rule {OpenTransientFile}⇒ ¬ {close} and a
positive association rule {OpenTransientFile} ⇒ {CloseTransientFile}
with the same confidence of 96.4%.

Figure 4 shows a but in function dsm_impl_mmap that incor-
rectly passes the file descriptor fd allocated with OpenTransientFile
at line 4 to close at line 12 along a path. It violates the above negative
rule and is thus reported by NAR-Miner. However, from the view
of accompanying analysis, because on certain paths fd is correctly
passed to CloseTransientFile at lines 8 and 16, which complies with
the requirement of the above positive rule. Hence, the buggy code
is indeed a support rather than a violation of the rule.

We fix the bug by replacing line 12 with CloseTransientFile(fd), as
shown in Figure 4. The patch has been accepted by the maintainers.

5 DISCUSSION AND LIMITATIONS
Negative Rules vs. Positive Rules. In this paper, we detect bugs
mainly based on negative association rules rather than positive
ones. However, these two kinds of approaches have no essential
conflicts. As they concentrating on different types of programming
rules, they can be complementary to each other. From the point
of view of bug detection, our approach is able to extract negative

1 //postgresql-10.3/src/backend/storage/ipc/dsm_impl.c
2 static bool dsm_impl_mmap(dsm_op op, dsm_handle h, Size s,

void **p, void **ma, Size *ms, int l) {
3 int fd, flags = ...; struct stat st; ... // omitted
4 if ((fd = OpenTransientFile(name, flags, 0600)) == -1)
5 return false;
6 if (op == DSM_OP_ATTACH) {
7 if (fstat(fd, &st) != 0) {
8 CloseTransientFile(fd);
9 return false;
10 }
11 } else {
12 close(fd);
13 if (op == DSM_OP_CREATE) unlink(name);
14 return false;
15 }
16 CloseTransientFile(fd);
17 return true;
18 }

NAR

CloseTransientFile(fd);

Patch+
PAR

Figure 4: A bug in PostgreSQL, violating the rule:
{OpenTransientFile} ⇒ ¬{close}.

programming rules and to detect bugs that cannot be revealed by
approaches based on mining positive association rules, and vice
verse. Theoretically, a combination of the two kinds of approaches
may exhibit better detection performance (less false negatives).

In addition, compared with mining positive rules, mining nega-
tive rules is often accompanied by generating more uninteresting
rules leading to a large amount of false positives. In this case, the
positive rules of the same program can be helpful to reduce them.
For example, if a piece of code violates a negative rule but satisfies
a positive one, the corresponding violation of the negative rule is
more unlikely to be a real bug. We can lower its ranking to filter
such a violation. Similarly, bug detection based on positive rules
may also face the same challenge (i.e., reporting false positives). So,
a straight-forward question is that, in such cases, whether the two
approaches can be helpful to reduce the false positives each other?
We will further research on this in the future.

Rule Explosion. In essence, the rule explosion problem in nega-
tive association rule mining cannot be completely resolved. In this
paper, we adopted a relatively straight-forward approach. Specifi-
cally, we utilize semantic relationships between elements to elimi-
nate a vast majority of uninteresting rules during mining, and then
employed the information entropy to measure interestingness of
rules such that potential interesting rules are further highlighted.
However, there may exist multiple solutions. For example, we can
further quantify the strength of semantic relations among program
elements to refine the mining results. Besides the data dependence
and data share relations, other relations can also be utilized, such
as control flow relation. These potential improvements can further
mitigate the rule explosion problem to lower manual audit effort.
This is also one of our future works.

Mining Algorithms. In this paper, we adopt the itemset min-
ing algorithm to extract negative programming rules. In practice,
for some kinds of programming rules, other forms of representa-
tion and mining algorithms may be more appropriate. For example,
using sequences to represent order-sensitive programming log-
ics [1, 29, 53, 55] is more suitable than using itemsets. However,
the sequence-based algorithm has poor robustness in discovering
order-insensitive programming logics. If we can effectively deter-
mine whether a programming pattern is order-sensitive or not, a

419

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

targeted algorithm can be adopted to mine related rules. This will
be one of our future works.

6 RELATEDWORK
Program analysis has been widely and successfully used for bug
finding. For example, model checking can automatically verify the
correctness properties of finite-state systems with the model of
the target system and the specification [10]. Due to the high cost
of writing a model for the target system, implementation-level
model checkers are then developed and find real bugs in system
code [32, 59]. Researchers also leverage program analysis to de-
tect the violations of specific rules. Typically, a set of programming
rules are provided to the tools which either statically or dynamically
check whether the target system violates the given rules. Pasareanu
and Rungta developed SPF to generate test cases for Java programs
by introducing symbolic execution into model checking [37]. Engler
et al. proposed techniques to statically check system rules using
system-specific compiler extensions [13] while FindBugs runs as
a standalone tool to inspect occurrences of bug patterns in Java
bytecode [11]. Livshits and Lams [28] translated user-provided spec-
ifications of vulnerabilities into static analyzers, and use them to
detect vulnerabilities, such as SQL injections and cross-site script-
ing, in Web applications written in Java. In addition, Molnar et
al. utilized dynamic test generation to find integer bugs in binary
programs by checking the violations of particular assertions [31].
Despite their success in finding bugs, these approaches largely
depend on the models of the system or the patterns of the bugs,
e.g., high-level API semantics [50], which we call prior knowledge.
Without that kind of knowledge, they are unable to find bugs. Our
work, by contrast, discovers the knowledge automatically and then
detects bugs based on the collected knowledge.

Techniques that can automatically extract knowledge from the
target system are also presented. The pioneer work proposed by
Engler et al. employed statistical analysis to infer temporal rules
from given rule templates, detecting bugs without specifying con-
crete rules [14]. Kremenek et al. used factor graphs to infer speci-
fication from programs by incorporating disparate sources of in-
formation [22]. These two approaches are limited to infer rules
with predetermined templates and specific knowledge that must
be provided by the users. Some approaches rely on certain domain
knowledge within the mining rules and are specially designed to
infer rules for critical APIs [1, 16, 36, 49, 53, 55] or security-sensitive
functions [47, 58]. They also require the users to provide the domain
knowledge to facilitate the mining process. However, NAR-Miner
requires nothing from the users while extracting rules based on the
association rules (implicitly) included in the programs.

Recently, researchers leverage data mining algorithms to ex-
tract more general rules from real large systems [4, 7, 8, 21, 23–
25, 27, 29, 30, 33, 34, 44, 54, 58]. The overarching idea behind these
mining based techniques is that: in most cases, programs are correct
and thus any anomalies are likely to be bugs. In general, these ap-
proaches first infer frequently appeared patterns from the target
system and consider such patterns as the (implicit) rules that devel-
opers should follow in coding. Then, they detect any violations of
those rules as potential bugs. The inferred patterns can be either
positive or negative. For example, PR-Miner [25] and AntMiner [26]

extract positive association rules that enforce paired appearances
of program behaviors. Chang et al. detect missing code structures
by mining frequently associated sub-graphs from program control
flows and inspecting occasional violations [7]. Yun et al. infer the
correct usage of APIs based on the mined positive association rules
of the semantics among different APIs [60]. Different with these
approaches, NAR-Miner focuses on mining negative association
rules from source code and detects bugs that violate those rules.
Similar rules can also be extracted from dynamic execution traces.
Beschastnikh et al. developed Synoptic to generate temporal sys-
tem invariants from system execution logs [5].

Wang et al. developed Bugram that employs the n-gram language
model to measure the probability of token sequences and treats
low probability sequences as anomalies, i.e., potential bugs [52].
Bugram can also detect certain bugs caused by the co-occurrence
of mutually suppressed program elements. However, due to the
limited size of the sequence window, Bugram is difficult to capture
bugs involving long distance program elements.

Mining negative association rules has been applied to data like
market basket, protein sequences, and financial data [18]. For such
data, the relationship between two elements is much simpler than
that for program elements which contribute different intensities to
the relationship. Wu et al. presented algorithms to effectively and
efficiently mine negative association rules in large databases [56].
Zhou and Yau proposed a combined algorithm to mine interesting
association rules, reducing large number of negative rules [61].
These algorithms can also be adopted by NAR-Miner as the basic
mining algorithm but need to handle program semantics in order
to reduce uninteresting rules.

7 CONCLUSION
Data mining techniques have been widely used to infer program-
ming rules and then detect software bugs based on the rules. Ex-
isting approaches have proven that positive association rules, in-
dicating that associated program elements must appear together,
are useful to detect bugs via checking the violations. However, the
negative programming rules, which disallow the co-occurrences
of involved program elements, are mostly neglected. We present
NAR-Miner to mine negative association rules from source code.
We introduce program semantics to guide the mining phase. We
also leverage function entropy to rank candidate rules and high-
light the interesting ones. By this means, NAR-Miner dramatically
reduces the number of uninteresting rules and mitigates the rule
explosion problem to a certain degree. We evaluate the prototype
on four popular large-scale systems and find a considerable number
of bugs, some of which have been confirmed by the maintainers.

ACKNOWLEDGEMENTS
The work is supported in part by National Natural Science Founda-
tion of China (NSFC) under grants 91418206, 61802413, 61170240,
61472429, and 61502465, National 973 program of China under grant
2014CB34-0702, National Science and Technology Major Project of
China under grant 2012ZX01039-004, Youth Innovation Promotion
Association of the Chinese Academy of Sciences (YICAS) under
grant 2017151, and Young Elite Scientists Sponsorship Program by
CAST (2017QNRC001).

420

NAR-Miner: Discovering Negative Association Rules ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API patterns as par-

tial orders from source code: from usage scenarios to specifications. In Proceedings
of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007. 25–34.

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast algorithms for mining
association rules in large databases. In Proceedings of 20th International Conference
on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. 487–499.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: principles,
techniques, and tools. Addison-Wesley.

[4] Glenn Ammons, Rastislav Bodík, and James R Larus. 2002. Mining specifications.
ACM Sigplan Notices 37, 1 (2002), 4–16.

[5] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging Existing Instrumentation to Automatically Infer Invariant-
Constrained Models. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering (ESEC/FSE ’11).
267–277.

[6] Pan Bian, Bin Liang, Yan Zhang, Chaoqun Yang, Wenchang Shi, and Yan Cai.
2018. Detecting Bugs by Discovering Expectations and Their Violations. IEEE
Transactions on Software Engineering (2018). https://doi.org/10.1109/TSE.2018.
2816639

[7] Ray-Yaung Chang, Andy Podgurski, and Jiong Yang. 2007. Finding what’s not
there: a new approach to revealing neglected conditions in software. In Pro-
ceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2007, London, UK, July 9-12, 2007. 163–173.

[8] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2016. Mining revision histories to detect cross-language clones without
intermediates. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016. 696–
701.

[9] Brian Chess and Gary McGraw. 2004. Static analysis for security. IEEE Security
& Privacy 2, 6 (2004), 76–79.

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8, 2 (April 1986), 244–263.

[11] Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus, William Pugh, and
Kristin Stephens. 2006. Improving your software using static analysis to find bugs.
In Companion to the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26,
2006, Portland, Oregon, USA. 673–674.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
13, 4 (1991), 451–490.

[13] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000. Checking
system rules using system-specific, programmer-written compiler extensions. In
Proceedings of 4th Symposium on Operating System Design and Implementation
(OSDI 2000), San Diego, California, USA, October 23-25, 2000. 1–16.

[14] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as inconsistent behavior: A general approach to inferring errors
in systems code. In Proceedings of the Proceedings of the 18th ACM Symposium
on Operating System Principles, SOSP 2001, Chateau Lake Louise, Banff, Alberta,
Canada, October 21-24, 2001. 57–72.

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (1987), 319–349.

[16] Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (SIGSOFT
’08/FSE-16). 339–349.

[17] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. 2002. A system and
language for building system-specific, static analyses. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Berlin, Germany, June 17-19, 2002. 69–82.

[18] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data mining: concepts and
techniques, 3rd edition. Morgan Kaufmann, Chapter 13.3, 607–615. http://hanj.
cs.illinois.edu/bk3/

[19] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Auto-
matically detecting error handling bugs using error specifications. In Proceedings
of the 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016. 345–362.

[20] Yuan Jochen Kang, Baishakhi Ray, and Suman Jana. 2016. APEx: automated
inference of error specifications for C APIs. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016. 472–482.

[21] Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh
Rajan. 2017. Exploiting Implicit Beliefs to Resolve Sparse Usage Problem in
Usage-based Specification Mining. Proc. ACM Program. Lang. 1, OOPSLA, Article
83 (2017), 83:1–83:29 pages.

[22] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler.
2006. From uncertainty to belief: Inferring the specification within. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06),
Seattle, WA, USA, November 6-8. 161–176.

[23] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic Mining of Specifi-
cations from Invocation Traces and Method Invariants. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). 178–189.

[24] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A tool for finding copy-paste and related bugs in operating system code. In
Proceedings of the 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, 2004. 289–302.

[25] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 306–315.

[26] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: mining more bugs by reducing noise interference. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. 333–344.

[27] Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: finding common
error patterns by mining software revision histories. In Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2005, Lisbon,
Portugal, September 5-9, 2005 (ESEC/FSE-13). 296–305.

[28] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in
Java Applications with Static Analysis. In Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005.

[29] David Lo, Siau-Cheng Khoo, and Chao Liu. 2008. Mining past-time temporal
rules from execution traces. In Proceedings of the 2008 International Workshop
on Dynamic Analysis: held in conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2008), WODA 2008, Seattle,
Washington, USA, July 21, 2008. 50–56.

[30] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A Popa, and Yuanyuan Zhou. 2007. MUVI: automatically inferring multi-
variable access correlations and detecting related semantic and concurrency bugs.
In Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007,
SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007. 103–116.

[31] David Molnar, Xue Cong Li, and David A. Wagner. 2009. Dynamic test generation
to find integer bugs in x86 binary Linux programs. In Proceedings of the 18th
USENIX Security Symposium, Montreal, Canada, August 10-14, 2009.

[32] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. 2002. CMC: A pragmatic approach to model checking real code.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 75–88.

[33] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014.
Mining Preconditions of APIs in Large-scale Code Corpus. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). 166–177.

[34] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). 383–392.

[35] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vccfinder: finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015. 426–437.

[36] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In Proceedings of the 34th International Conference on Software Engineering, ICSE
2012, June 2-9, 2012, Zurich, Switzerland. 925–935.

[37] Corina S. Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: Symbolic Exe-
cution of Java Bytecode. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE ’10). 179–180.

[38] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static specification inference using predicate mining. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation,
San Diego, California, USA, June 10-13, 2007. 123–134.

[39] Bug report list for FFmpeg. March 2018. https://trac.ffmpeg.org.
[40] Bug report list for OpenSSL. March 2018. https://github.com/openssl/openssl/

issues.

421

https://doi.org/10.1109/TSE.2018.2816639
https://doi.org/10.1109/TSE.2018.2816639
http://hanj.cs.illinois.edu/bk3/
http://hanj.cs.illinois.edu/bk3/
https://trac.ffmpeg.org
https://github.com/openssl/openssl/issues
https://github.com/openssl/openssl/issues

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai

[41] Bug report mailing list for PostgreSQL. March 2018. https://www.postgresql.org/
list/pgsql-bugs.

[42] Cindy Rubio-González and Ben Liblit. 2011. Defective error/pointer interactions
in the linux kernel. In Proceedings of the 2011 International Symposium on Software
Testing and Analysis. ACM, 111–121.

[43] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. 1998. Mining
for strong negative associations in a large database of customer transactions.
In Proceedings of the Fourteenth International Conference on Data Engineering,
Orlando, Florida, USA, February 23-27, 1998. 494–502.

[44] Boya Sun, Gang Shu, Andy Podgurski, and Brian Robinson. 2012. Extending static
analysis by mining project-specific rules. In Proceedings of the 34th International
Conference on Software Engineering, ICSE 2012, Zurich, Switzerland, June 2-9, 2012.
1054–1063.

[45] Laszlo Szathmary, Amedeo Napoli, and Petko Valtchev. 2007. Towards rare
itemset mining. In Proceedings of the 19th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2007), Patras, Greece, October 29-31, 2007. 305–
312.

[46] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
bugs or bad comments?*. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17,
2007. 145–158.

[47] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008.
AutoISES: automatically inferring security specification and detecting violations.
In Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA. 379–394.

[48] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-
tations from comments and code to detect interrupt related concurrency bugs.
In Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 11–20.

[49] Suresh Thummalapenta and TaoXie. 2009. Alattin:Mining alternative patterns for
detecting neglected conditions. In Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009. 283–294.

[50] John Toman and Dan Grossman. 2017. Taming the Static Analysis Beast. In
Proceedings of the 2nd Summit on Advances in Programming Languages, SNAPL
2017, Asilomar, CA, USA, 7-10, May, 2017. 18:1–18:14.

[51] Olivier Vandecruys, David Martens, Bart Baesens, Christophe Mues, Manu
De Backer, and Raf Haesen. 2008. Mining software repositories for compre-
hensible software fault prediction models. Journal of Systems and software 81, 5

(2008), 823–839.
[52] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:

bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016. 708–719.

[53] Andrzej Wasylkowski and Andreas Zeller. 2011. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3-4 (2011), 263–292.

[54] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
Object Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE ’07). 35–44.

[55] Westley Weimer and George Necula. 2005. Mining temporal specifications for
error detection. Proceedings of the 11th Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2005, , Edinburgh, UK, April 4-8, 2005,, 461–476.

[56] Xindong Wu, Chengqi Zhang, and Shichao Zhang. 2004. Efficient mining of both
positive and negative association rules. ACM Trans. Inf. Syst. 22, 3 (July 2004),
381–405.

[57] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-
matic inference of search patterns for taint-style vulnerabilities. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. 797–812.

[58] Fabian Yamaguchi, ChristianWressnegger, Hugo Gascon, and Konrad Rieck. 2013.
Chucky: Exposing missing checks in source code for vulnerability discovery. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013. 499–510.

[59] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2006.
Using model checking to find serious file system errors. ACM Trans. Comput.
Syst. 24, 4 (Nov. 2006), 393–423.

[60] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur
Naik. 2016. APISan: sanitizing API usages through semantic cross-checking. In
Proceedings of the 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016. 363–378.

[61] Ling Zhou and Stephen S.-T. Yau. 2007. Efficient association rule mining among
both frequent and infrequent items. Computers & Mathematics with Applications
54, 6 (2007), 737–749.

422

https://www.postgresql.org/list/pgsql-bugs
https://www.postgresql.org/list/pgsql-bugs

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Overview
	3.2 Challenge
	3.3 Preparing Data
	3.4 Extracting Frequent & Infrequent Itemsets
	3.5 Generating Negative Association Rules
	3.6 Detecting Violations

	4 Evaluation
	4.1 Experiment Setup
	4.2 Detecting Bugs in the Linux Kernel
	4.3 Detecting Bugs in Other Systems
	4.4 Case Study

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References

