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Abstract—While smartphones and mobile apps have been an
integral part of our life, modern mobile apps tend to contain a lot
of rarely used functionalities. For example, applications contain
advertisements and offer extra features such as recommended
news stories in weather apps. While these functionalities are not
essential to an app, they nonetheless consume power, CPU cycles
and bandwidth. In this paper, we design a UI driven approach
that allows customizing an Android app by removing its un-
wanted functionalities. In particular, our technique displays the
UI and allows the user to select elements denoting functionalities
that she wants to remove. Using this information, our technique
automatically removes all the code elements related to the selected
functionalities, including all the relevant background tasks. The
underlying analysis is a type system, in which each code element
is tagged with a type indicating if it should be removed. From the
UI hints, our technique infers types for all other code elements
and reduces the app accordingly. We implement a prototype and
evaluate it on 10 real-world Android apps. The results show
that our approach can accurately discover the removable code
elements and lead to substantial resource savings in the reduced
apps.

I. INTRODUCTION

Smartphone apps have become an integral part of our

daily life [1]. However, apps tend to contain a lot of rarely

used functionalities. For example, advertisements are reported

to appear in more than 50% of Android apps [2]. As ad

libraries are provided by third party service providers and

integrated by developers into their apps, this practice has raised

lots of privacy and security concerns [3]. In fact, previous

studies have identified sensitive information exposure in ad

networks [4], [5], and others have found that upon a user’s

click, advertisements may reach some destinations that play

an important role in propagating attacks [6]. In addition to

advertisements, apps may offer extra features that are usually

not desired by the users. For example, a weather app may

recommend news stories, and a calendar app may include

news-like sections (as we will show in Section IV-B2).

Besides the non-relevant features, some apps may contain

complex functionalities that are relevant to the apps’ purpose,

but considered redundant or distracting by the users. For ex-

ample, a shopping app usually recommends products based on

the user’s profile and shopping history. However, uninterested

users might find such recommendations quite distracting, and

would appreciate it if the app provides an option to turn this

feature off. Besides visual distraction, unwanted functionalities

often incur additional consumption of battery power, CPU

cycles, bandwidth and so on. Previous studies have shown that

mobile apps using ads consume significantly more network

data and have increased energy consumption [7].

Therefore, there is an increasing need of automatically

customizing mobile apps to meet the various demands of

different user groups. For example, enterprises and government

agencies may want the apps installed on their employee’s de-

vices to not have potentially malicious third party components

(e.g., ad components). Users that often operate their devices

in rough environments such as outdoors and battle fields may

want to minimize battery and data consumption by turning

off unnecessary app features. Even normal users may have

different personal preferences/needs to customize apps. For

example, parents may want to disable components that could

deliver inappropriate content to their children. Unfortunately,

due to the potentially diverse needs, app customization and

personalization are prohibitively expensive in terms of human

effort for the development team if no automatic tools are

available.

In this paper, we propose a UI driven app customization

technique that removes unwanted features in Android apps

that are associated with given UI elements. In particular, our

technique requires the user to first specify the UI elements

denoting functionalities that she wants to remove. Using

this information, our technique automatically identifies the

program locations that load the specific UI elements into code

and store them in variables. With such program locations, our

technique can then track all correlated uses of the UI elements

and the code elements for relevant background tasks, e.g.,

acquiring data from remote servers. While the UI related code

elements are directly removable as indicated by the user, the

background tasks require more analysis to determine if they

are removable. Specifically, our technique examines whether

the background tasks generate data that exclusively flows to

the specified UI elements. If so, these background tasks are

considered removable. Otherwise (i.e., the generated data gets

propagated to other components), the background tasks cannot

be removed. The underlying analysis is a type system, in

which each code element is tagged with a type indicating

if it should be removed. The type system infers types for

all correlated code elements from the UI hints. Finally, our

technique reduces the app according to the deduced types.

Our technique can be potentially used in the last stage of

app development to generate a large number of customizations

to meet different needs. In addition, it is designed in such

a way that it does not require source code. As such, legacy

apps whose source code and original developers are no longer

available can benefit from our technique as well.

We evaluate our prototype on 10 popular Android apps. Our

evaluation shows a substantial reduction of various resources
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Fig. 1. Screenshot of app WeatherBug.

usage. On average, removing certain UI elements associated

with typical unwanted functionalities results in saving 28.1%

of data usage. 34.1% of CPU time, 26.2% Wi-Fi running

time, and 37.6% of computed power use. Our achieved results

clearly demonstrate the strength of our proposed UI driven

application reduction.

Our work makes the following contributions:

• We propose a UI driven approach to remove unwanted

functionalities in Android apps associated with UI ele-

ments specified by the user. Our technique features a type

system that tags all relevant code elements to indicate if

they are removable.

• We implement a prototype and evaluate it on a set of real-

world Android apps. The results show that our approach

accurately discovers the removable code elements and the

reduction leads to substantial resource savings.

II. MOTIVATION

We use WeatherBug [8], a real-world Android app to

motivate our technique. WeatherBug is a popular app that

provides weather alerts, real-time weather conditions, hourly

forecasts and much more. While the status bar notification

provided by WeatherBug is enough to check live weather

conditions, the user can launch the app to receive more detailed

information and access more advanced features. Intuitively,

once the app is launched, the user expects to get a view of

real-time weather conditions. However, the main page offers

much more additional information. As shown in Figure 1, the

main page of the app contains the real-time weather condition,

some weather news and a banner ad. If we further scroll down,

the page contains more unrelated information such as photos

from other users, the closest spark strike and so on.

Besides overwhelming the user with unrelated information,

these components consume additional energy and network

data. Thus, there is a need to customize/refactor the app to

remove some features that are not essential to various clients.

For example, to prevent visual distraction, reduce potential

privacy leaks and malicious behaviors (in an enterprise envi-

ronment) [9], [3], [6], and to reduce energy and network data

consumption (in rough environments such as outdoors). The

overarching idea of our work is to customize an app to meet

different user needs by specifying what features are not needed

on the UI.

Suppose the user wants to remove some unwanted UI com-

ponents and any associated functionalities in the WeatherBug

app. Specifically, consider the case in which the user selects

WEATHER NEWS, the highlighted component in Figure 1

for removal. Figure 2 shows simplified code snippets rep-

resenting the corresponding work flow where n describes

the execution order of a method. When the component is

loaded, the Android OS invokes 1 onCreateView which

inflates a static layout file at line 4 to hold the content of

the component. Additionally, a StoriesAdapter is created

and added to the component. This provides a binding from the

component-specific data set to views that are displayed, e.g.,

the images and the titles of all inner elements. The Android

OS then invokes 2 onActivityCreated that eventually

launches a background functionality for acquiring data from a

remote server. Once this data is loaded, the background task

invokes its callback method 3 onRequestCompleted. In

this callback method, the data is transmitted to a thread and

the thread is queued for execution. Later, the Android OS

executes 4 run in the thread. In run, the data is retrieved and

saved to a shared data set at line 30. Next, the thread notifies

StoriesAdapter about the data set change at line 31. Fi-

nally, this data set change notification triggers the execution of

5 onCreateViewHolder and 6 onBindViewHolder.

The method onCreateViewHolder creates a view holder

with an inflated view, and the method onBindViewHolder

obtains data from the shared data set and displays it on the

inflated view at line 45.

In order to remove the unwanted component, i.e., the UI

elements and functionalities associated with WEATHER NEWS,

our approach first receives the information associated with the

elements specified by the user. Next, it uses this information

to discover the program locations loading the UI elements

into code. Then it takes four steps to remove the UI elements

and associated functionalities: 1) forwardly discovers all code

related to the specified UI elements; 2) starting from where

the UI elements use data, backwardly tracks the data to its

generation points in background functionalities; 3) examines

whether the data obtained from the discovered data generation

points are exclusively used by the specific UI elements or not;

4) iteratively removes the code.

In our motivating example, lines 4, 37 and 43 are associ-

ated with the unwanted UI elements. Our technique forwardly

tracks the uses of the correlated variables, as depicted by

in Figure 2 and identifies lines 7 and 45 that put data to the

specific UI elements. Line 7 binds StoriesAdapter to

the UI component to respond to data changes and displays

the content, acting similarly to an action handler. We omit

the discussion of tracking the adapter for simplicity. Line 45

displays a short description of the corresponding image as

shown in Figure 1 using the given data. Starting from line 45,

we backwardly track the data along onRequestCom-

pleted and then the data generation point in the background

functionality (omitted in the code). We further find the location
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1 class StoriesListFragment ... {

2 StoriesAdapter adapter; ArrayList data;

3 public View onCreateView(LayoutInflater inflater,

ViewGroup vg, Bundle b) {

4 View view = inflater.inflate(R.layout.stories, vg);

5 RecyclerView rv = view.findViewById(...);

6 adapter = new StoriesAdapter(this);

7 rv.setAdapter(adapter);

8 return view;

9 }

10

11 public void onActivityCreated(Bundle b) {

12 loadData(); //omitted

13 }

14

15 public void onRequestCompleted(Request req) {

16 UpdateStories ud = new UpdateStories(this, req);

17 handler.post(ud);

18 }

19 }

20 class UpdateStories implements Runnable {

21 StoriesListFragment fragment;

22 Request request;

23 public UpdateStories(StoriesListFragment f,

Request r) {

24 fragment = f;

25 request = r;

26 }

27 public void run() {

28 List list = request.getResponse();

29 fragment.data.clear();

30 fragment.data.addAll(list);

31 fragment.adapter.notifyDataSetChanged();

32 }

33 }

34 class StoriesAdapter extends RecyclerView.Adapter {

35 StoriesListFragment fragment;

36 public ViewHolder onCreateViewHolder(ViewGroup vg, int type) {

37 View v = View.inflate(..., R.layout.storiespage, vg);

38 NewsViewHolder vh = new NewsViewHolder(fragment, v);

39 return vh;

40 }

41

42 public void onBindViewHolder(ViewHolder vh, int pos) {

43 TextView tv = ((NewsViewHolder)vh).findViewByIdR.id.stitle);

44 StoryInfo info = fragment.data.get(pos);

45 tv.setText(info.getTitle());

46 }

47 }

1

2

3

4

5

6

Indirect call

UI related forward slicing

Backward data tracking

Forward data tracking

n
n-th executed method

Fig. 2. Simplified code snippet for the WEATHER NEWS component and the corresponding flows.

1 // in class StoriesListFragment

2 public View onCreateView(...) {

3 TextView tv = new TextView(...);

4 tv.setText("WEATHER NEWS Removed");

5 return tv;

6 }

Fig. 3. Removing WEATHER NEWS.

invoking the background functionality at line 12. Next, we

check whether the generated data is only used in the specific

UI elements by forwardly tracking the data from the data

generation point following in Figure 2. We do not find

any other components using the data in the example and

thus the data is specific to the UI elements. However, the

background functionality is found to be a public component

used at other locations in the app and thus the discovered

code inside the functionality, including the data generation

point, cannot be removed. Finally, our technique removes the

other code not occurring in the background functionality and

iteratively removes methods and classes if applicable.

To show the effect of the code reduction, our technique re-

places the layout inflation in onCreateView with a dummy

view and eliminates all the other removable code elements.

The modified code snippet and the runtime screenshot is

shown in Figure 3. The dummy view is depicted in the

highlighted area. As shown in Section IV, removing the

WEATHER NEWS component reduces 9% of the data usage

and 20% of the power consumption.

App

User

UI Element
Discovery

0

UI Element
Tracking

1
Backward

Data Tracking

2

Forward
Data Tracking

3
Code

Removal

4

Modified
App

Fig. 4. Approach overview.

III. DESIGN

In this section, we will discuss our UI driven approach

to discovering removable code elements in Android apps.

Figure 4 shows the work flow of our approach. As discussed in

Section II, after receiving the user specified UI elements and

discovering the program locations referring to them (step 0 ),

our approach takes four steps to detect potentially removable

code elements: 1 forwardly discovers all uses of the specified

UI elements; 2 backwardly tracks the data used in the

UI elements; 3 finds all uses of the data, starting from the

discovered data generation points; 4 iteratively removes the

code elements based on the results of data tracking. Steps 0

and 1 are discussed in Section III-C, Section III-D describes

steps 2 and 3 , and Section III-E talks about step 4 .

We use the code snippet in Figure 5 throughout the sec-

tion to exemplify the approach details. Assume that id0

and id1 refer to unwanted UI elements but id2 doesn’t.

BgTask represents a background functionality that obtains

input data from remote servers and stores the result to data.

Line 13 abstracts the operations of obtaining input data by

function getInputData. A concrete example is Http-

Client.execute() which is commonly used in Android
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1 // class A declares field "data"

2 class B extends A {

3 a() { t = new BgTask(this);trigger(t); }

4 b() { textView0 = findViewById(id0);//unwanted

5 textView0.setText(data); } }//‘‘B’’

6 class C extends A {

7 c() { g = new BgTask(this);trigger(g); }

8 d() { textView1 = findViewById(id1);//unwanted

9 textView1.setText(data.split(":")[0]);

10 textView2 = findViewById(id2);//not unwanted

11 textView2.setText(data.split(":")[1]); } }//‘‘C’’

12 class BgTask { A ck; BgTask(A a) {ck = a;}

13 void run() { ck.data = getInputData(); }}//‘‘BgTask’’

Fig. 5. Code example for discussion.

Program P ::= K*
Class K ::= M*
Method M ::= m(x) {s*}

Statement s ::= x :=l c /*constant*/

| x :=l inflate(i) /*inflation*/

| x :=l findViewById(i) /*get view*/

| x :=l
⊖y /*unary assignment*/

| x :=l y⊕z /*binary assignment*/

| x :=l φ(y, z) /*value merging in SSA*/

| x :=l y.z /*get field*/

| x.y :=l z /*put field*/

| x :=l checkcast(y) /*type cast*/

| x :=l new k(y) /*new instance*/

| x :=l y.m(z) /*method call*/

| returnl(x) /*return in a method*/
Variable x, y, z /*all variables*/
ID i /*UI-related Id*/
Value c /*non-Id constant*/
Label l /*{l1, l2, l3, ...}*/

Fig. 6. Simplified language model.

apps to fetch remote data from Web servers. The data acqui-

sition task is initiated at two locations: line 3 and line 7. The

data is displayed on UI elements at lines 5, 9 and 11.

A. Language Abstraction

To simplify our discussion, we introduce an abstract lan-

guage, as presented in Figure 6. A program is made up of

classes, a class contains a list of methods, and each method

contains a number of statements. We model common types

of statements and other operations are abstracted away or

simplified. We label statements with a superscript.

As we discussed in Section II, we start our analysis from

the layout inflations and aim to remove the inflated views.

Thus, we introduce the function inflate to represent all kinds

of inflations in the code (e.g., lines 4 and 37 in Figure 2).

Additionally, we introduce another function findViewById to

represent the operation of an app looking for a UI element.

We abstract all types of assignment, such as unary assign-

ment, binary assignment, type cast assignment and assignment

from/to a field variable. Note that our language is a kind of

single static assignment (SSA) language such that conditionals

(including loops) are implicitly represented by the value merge

statement φ(y, z). Since the predicate of the value merge

statement is irrelevant in our analysis, it is abstracted away

and hence y and z denote the values of the same variable in

the two branches of a conditional.

[s] := statementsIn(m) [m] := methodsIn(k)
x := thisOf(k) x := paramOf(m)
s := returnOf(m)

Fig. 7. Functions for class, method and statement.

For object creation (i.e., new instance statement) and method

calls, we assume there is only one parameter besides the

receiver object (‘this’) of an instance method call. A return

statement returns a value from a callee method to a variable

in the caller method.

We also define a number of auxiliary functions for state-

ments, methods, and classes to acquire correlated information

during analysis. These functions are shown in Figure 7.

Function statementsIn returns all statements inside a method,

represented by [s]. Similarly, methodsIn returns all declared

methods in a class k. Functions thisOf and paramOf behave

similarly, except that one looks for ‘this’ reference in the

callee method and the other searches the corresponding formal

parameter. The return statement of a method is given by

returnOf.

B. Type System

We formalize our approach in a type system. Code elements,

including variables, statements, methods, and classes are as-

sociated with tags. A tag is treated as the type T of the code

element l. We say l has type T , written as l : T . The type of

a code element may be a set of tags, for example, l : {T, T ′}.

In this case, We use “∪” to union two sets of types together.

In this paper, we define the type domain as:

Type =
{

UIRelated UIData InputUIData

Removable Unremovable

}

Type UIRelated is used to mark the variables or state-

ments that depend on the specified UI elements. We type

the code elements with it and propagate it at step 1 . For

example, we type an inflate() method call where the

inflated view is a user specified UI element and the resultant

variable with UIRelated. When we find any data uses on

the specified UI elements, we type the data variable with

UIData and then backwardly propagate it at step 2 . If we

reach a data generation point along above propagation, we

get the knowledge that the data is some input data from

outside sources. We type the data generation point and the

data variable with InputUIData and propagate it forwardly

(step 3 ). Eventually, we can mark which code elements are

removable or definitely unremovable using the corresponding

types (step 4 ).

Notice that type InputUIData can be parameterized with

a data generation point. It will help us distinguish the types

of code elements which are correlated with multiple data

generation points.

In addition to the concrete types, if any code element has

not been visited or is not interesting to us, we say it is not

typed, in the notation of nil.

Consider that the same code element executed in different

calling contexts may produce different results, and in some

contexts it may be related to the specified UI elements while
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UI-Inflate
belongToSpecifiedUI(i)

Γ1, {x :=l inflate(i)}ǫ |= Γ1 ⇒ [xǫ, lǫ : UIRelated]Γ1

UI-FindView
belongToSpecifiedUI(i)

Γ1, {x :=l findV iewById(i)}ǫ |= Γ1 ⇒ [xǫ, lǫ : UIRelated]Γ1

UI-Call-This
nonApi(m) Γ1 ⊢ yǫ : UIRelated ǫ′ = ǫ · l t = thisOf(m)

Γ1, {x :=l y.m(z)}ǫ |= Γ1 ⇒ [xǫ, tǫ′ , lǫ : UIRelated]Γ1

UI-BAssign
Γ1 ⊢ yǫ : UIRelated

Γ1, {xǫ :=l yǫ ⊕ zǫ}ǫ |= Γ1 ⇒ [xǫ, lǫ : UIRelated]Γ1

UI-Return
Γ1 ⊢ rǫ′ : UIRelated ǫ′ = ǫ · l x :=l y.m(z)

Γ1, {returnl
′

(r)}ǫ′ |= Γ1 ⇒ [xǫ, l′
ǫ′
, lǫ : UIRelated]Γ1

Fig. 8. Rules for discovering code elements associated with the UI elements.

in other contexts it may not be. We use ǫ to represent the

calling context which is a stack of labels referring to method

calls or new instance sites. Each code element l is tagged

with a context (e.g., lǫ) in order to conduct context-sensitive

analysis. Different contexts are depicted by the subscript of

ǫ, e.g., ǫ1 and ǫ2. We use “·” to concatenate a context with a

label to form a new context for the statements in the callee

method associated with l, for example, ǫ′ := ǫ · l.
The mappings from the code elements to the types form

the context Γ of the type system, which is iteratively updated

during analysis until a fixed point is reached. For example,

at the beginning, Γ is empty. Upon a removable statement lǫ,

Γ is updated to {lǫ : Removable}. At this point, we have

Γ ⊢ lǫ : Removable, which means under (type) context

Γ, statement lǫ is typed with Removable. In other words,

Γ(lǫ) = Removable, where Γ(lǫ) evaluates statement lǫ in

the context to obtain the corresponding type.

When a statement lǫ is evaluated, the context may be

updated. We use Γ, lǫ |= Γ ⇒ Γ′ to indicate that under

type context Γ, evaluating code lǫ updates the context from

Γ to Γ′. We use [lǫ : T ]Γ to represent an update to the

context. Specifically, if no mapping is found for lǫ in Γ, the

mapping is added to the context. But if there exists a mapping

for lǫ, the rule substitutes the existing type of lǫ with type

T . Multiple mappings can be updated simultaneously. For

instance, [lǫ1 : T, l′
ǫ2

: T ′]Γ update the context for two code

elements lǫ1 and lǫ2 . We also use [lǫ1 , l
′
ǫ2

: T ]Γ to denote

[lǫ1 : T, l′
ǫ2

: T ]Γ for brevity.

In the following analysis, we define four type contexts: Γ1,

Γ2, Γ3 and Γ4 for the four steps respectively. We also have a

special context MR in which the discovered data generation

points are mapped to True or False, indicating whether the

corresponding data generation points must be retained or not.

C. Turning Off UI Element

In this section, we discuss how to identify the code elements

related to the unwanted UI elements, i.e., steps 0 and 1 in

Figure 4. Starting from inflate and findViewById, we forwardly

track the uses of the specified UI elements and type all

correlated statements and variables with UIRelated.

We define the rules in Figure 8. We omit the rules for

some statements, e.g., unary assignment, φ assignment and

field access, due to the space limit. In addition, we do not

present the rules for API method calls that require models.

New instance operations behave similarly to method calls and

thus we omit the corresponding rules too.

Based on the language definition, the user specified UI

elements are introduced into the code through layout inflation

(inflate) or view finding (findViewById). We apply rules UI-

Inflate and UI-FindView to start the analysis. If the given id is

corresponding to a specified UI element, we say the resultant

variable and the statement are related to specific UI element.

If the receiver object y of a method call m is typed with

UIRelated, the definition of y will be potentially removed.

The removal results in a null reference, leading to run-time

exceptions. Therefore, we apply rule UI-Call-This in this case

to type the resultant variable x, the method call statement l and

the corresponding ‘this’ reference in the callee method with

UIRelated. If an actual argument z is typed, the behavior is

similar to UI-Call-This and the corresponding rule is omitted.

Rule UI-BAssign indicates that if a right-hand-side variable is

typed, the left-hand-side variable and the statement are typed

too. Rule UI-Return is applied when a return variable in a

callee method is typed with UIRelated. It propagates the

type to the resultant variable at the corresponding call site and

types the call site with UIRelated.

Example: Consider applying the rules to the code snippet

in Figure 5. First, we type textView0 and textView1,

lines 4 and 8 with UIRelated by rule UI-FindView. Then

through type propagation, lines 5 and 9 are typed with UIRe-

lated. We present the context updates as follows. ǫ1 is the

calling context of method B.b() and ǫ2 is the calling context

of method C.d().

UI-FindView(Line 4ǫ1 , Line 8ǫ2 ) ⇒





textView0ǫ1 : UIRelated

textView1ǫ2 : UIRelated

Lines 4ǫ1 ,8ǫ2 : UIRelated



Γ1

UI-Call-This(Line 5ǫ1 , Line 9ǫ2 ) ⇒
[

Lines 5ǫ1 , 9ǫ2 : UIRelated
]

Γ1

D. Discovering Associated Background Functionalities

If we reach some API method calls that put data to

the specified UI elements for display, we track where the

data is generated. We backwardly track the generation of

the data and type all the involved statements and associ-

ated variables with UIData (step 2 ). When we reach a

data generation point that acquires data from outside sources

(e.g.,HttpClient.execute()), we use InputUIData
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UI-Put-Data
Γ1 ⊢ yǫ : UIRelated Γ1 ⊢ lǫ : UIRelated apiPutDataToUI(m)

Γ1, {x :=l y.m(z)}ǫ |= Γ2 ⇒ [zǫ : UIData]Γ2

Bwd-Assign
Γ2 ⊢ xǫ : UIData

Γ2, {x :=l y ⊕ z}ǫ |= Γ2 ⇒ [yǫ, zǫ, lǫ : UIData]Γ2

Bwd-Call-Return
Γ2 ⊢ xǫ : UIData nonApi(m) ǫ′ = ǫ · l {returnl

′

(r)} = returnOf(m)

Γ2, {x :=l y.m(z)}ǫ |= Γ2 ⇒ [rǫ′ , l
′
ǫ′
, lǫ : UIData]Γ2

Bwd-Call-Param
nonConstructor(m) ǫ′ = ǫ · l p = paramOf(m) Γ2 ⊢ pǫ′ : UIData

Γ2, {x :=l y.m(a)}ǫ |= Γ2 ⇒ [aǫ : UIData]Γ2

Fig. 9. Rules for backwardly discovering data relevant code elements.

Bwd-Call-Data-Gen
Γ2 ⊢ xǫ : UIData apiGetInputData(m)

Γ2, {x :=l y.m(z)}ǫ |= Γ3 ⇒ [xǫ, lǫ : Γ3(lǫ) ∪ {InputUIData(l)}]Γ3

Fwd-Assign
InputUIData(ld) ∈ Γ3(yǫ)

Γ3, {x :=l y ⊕ z}ǫ |= Γ3 ⇒ [xǫ, lǫ : Γ3(xǫ) ∪ {InputUIData(ld)}]Γ3

Fwd-Call-This
nonApi(m) InputUIData(ld) ∈ Γ3(yǫ) ǫ′ = ǫ · l t = thisOf(m)

Γ3, {x :=l y.m(z)}ǫ |= Γ3 ⇒ [xǫ, tǫ′ , lǫ : Γ3(xǫ) ∪ {InputUIData(ld)}]Γ3

Fwd-Call-Return
InputUIData(ld) ∈ Γ3(rǫ′ ) ǫ′ = ǫ · l x :=l y.m(z)

Γ3, {returnl
′

(rǫ′ )}ǫ′ |= Γ3 ⇒ [xǫ, lǫ, l′
ǫ′

: Γ3(xǫ) ∪ {InputUIData(ld)}]Γ3

Unexpected-Data-Use
InputUIData(ld) ∈ Γ3(zǫ) UIRelated /∈ Γ1(yǫ) apiPutDataToUI(m)

Γ1,Γ3, {x :=l y.m(z)}ǫ |= MR(ld) → True

Fig. 10. Rules for discovering the uses of input data.

to type the data variable and the statement, indicating their

correlation with input data. We then forwardly propagate

InputUIData along data flows (step 3 ). Along the forward

propagation, we parameterize InputUIData with ld, a data

generation point, to distinguish data originating from different

points. If we encounter any cases in which the tracked data is

used in some UI components other than the unwanted ones,

we need to remember that the corresponding data generation

points from which the data propagations are unremovable. We

define the backward propagation rules in Figure 9 and the

forward rules in Figure 10.

Step 2 starts with the discovery of API calls putting data on

specified UI elements. Rule UI-Put-Data initiates the context

Γ2 which stores mappings from variables or statements to type

UIData, by typing the data variable with UIData. Bwd-*

rules are then applied to propagate the type backwardly. If a re-

sultant variable x is typed in a method call, the corresponding

return value r in the callee method should also be typed (Bwd-

Call-Return). If a formal parameter p in a callee method is

typed, the corresponding actual argument at the caller is typed

(Bwd-Call-Param). If the typed variable is this reference in

the callee method, we type the corresponding receiver object.

During the propagation, if we meet a API method call that

acquires outside data and stores the data to any variables

under tracking, we consider the method call as a data gen-

eration point and thus type the data variable and the data

generation point with InputUIData in context Γ3 (Bwd-

Call-Data-Gen). Given the fact that a code element may be

correlated with multiple data generations, we associate each

type InputUIData with the location of data generation and

we use a set to represent the type of a code element. For

example, statement a = b · c concatenates two strings and

b is generated by a method call at l0 while c is generated

at l1. Therefore, a has a type of {InputUIData(l0, l1)}. If

either one of the data generation points cannot be removed,

this statement is unremovable. The forward propagation rules

are straightforward, similar to the ones for discovering UI

related code elements, except that type InputUIData is

parameterized with a data generation point and the resultant

type is a union of the incoming type and the original types.

If the input data is discovered to be used by some UI ele-

ments that are not correlated with the unwanted UI elements,

we apply rule Unexpected-Data-Use and mark in context MR

that the corresponding data generation point must be retained,

i.e., unremovable.

Example: We apply the rules to the example in Figure 5.

Backward data tracking updates Γ2 as:
[

data{...;3}, data{...;7},Line 13{...;3}, Line 13{...;7} : UIData
]

Γ2

We use {...;n} to denote the calling context of method run()

where n denotes the line number of corresponding trigger site.

The background functionality is triggered in two contexts, one

at line 3 and the other at line 7. This results in different

instances of variable data and the statement of getting input

data. Therefore, variable data at line 13 is defined in two

calling contexts, represented by data{...;3} and data{...;7}.

Starting from the data generation points, we have




data{...;3}, Line 13{...;3}, Line 5ǫ1 : {InputUIData(Line 13)}

data{...;7}, Line 13{...;7} : {InputUIData(Line 13)}

Line 9ǫ2 , , Line 11ǫ2 : {InputUIData(Line 13)}



Γ3

At line 11, the data is sent to a unspecified UI element

and the line is typed with InputUIData(Line 13). With
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rule Unexpected-Data-Use, we mark the corresponding data

generation point as MR(Line 13) → True, saying that the

corresponding data generation point must be retained.

E. Removing Code Elements

After we type all data correlated statements with one or

more InputUIData types, we can finally determine which

code elements are removable or unremovable (step 4 ). The

rules are shown in Figure 11. We use l to aggregate the code

element in all calling contexts, i.e., lǫj for all j.

Rule Remove-Stmt-1 says, if a code element l is directly

related to the specified UI elements in all possible calling

contexts, it is absolutely removable. If l in a context ǫ has

a type of InputUIData which is associated with some data

generation point ld, and the data generation point needs to

be retained when l is not a UI related code element, rule

Unremove-Stmt declares l as unremovable. In contrast, if the

corresponding data generation point is not required to be

retained and the target l has not been typed with Unre-

movable, we use Remove-Stmt-2 to mark l as removable.

Rules Remove-Method and Remove-Class behave similarly.

If all call sites of a method or instantiation sites of a class are

removed, the method or the class can be fully removed. The

last two rules iteratively remove included code elements when

a method or a class is removable.

We are also able to find out the trigger sites of back-

ground functionalities, like the start() call of a Thread

object or execute() call on an AsyncTask instance. If

the triggered operations in background functionalities are all

removable, we can remove the corresponding trigger sites as

well. Furthermore, we do not remove branch statements like

if and switch even if they use variables whose definitions

are removable. Instead, we replace the definition statement of

each such variable with a statement that assigns 0 or null to

that variable, depending on the type of the variable.

Example: We can now apply the rules to remove code

elements in Figure 5. We have
[

Line 4, Line 5, Line 8, Line 9 : Removable

Line 11, Line 13 : Unremovable

]

Γ4

Therefore we can remove lines 4, 5, 8 and 9. The back-

ground data generation point at line 13 cannot be removed

because its data flows to non-specified UI elements at line 11.

However, under the context of class B where the data is

only used in the unwanted UI elements, we can disable the

corresponding trigger of the background functionality to avoid

unnecessary network access after we remove the unwanted UI

elements. We discover the corresponding trigger site at line 3

and we type it with Removable while we retain the trigger

site at line 7.

IV. EVALUATION

We implement a prototype TOFU, turning off UI elements,

to discover the removable code elements for specified un-

wanted UI elements. TOFU is built on top of Soot [10],

supporting rewriting modified code to DEX files. We evaluate

TOFU on 10 popular Android apps (Table I). TOFU runs on

TABLE I
BENCHMARK APPS AND REMOVED UI.

App Removed UI Description

WeatherBug WEATHER NEWS Weather related news

Dictionary.com Blog/Slideshow Word related items on main page

Baidu iKnow Latest Q&A Real-time update on main page

Walmart
Recommendation

Recommended items based on

Macy’s the other users’ choices

China Calendar News Button A button to news page

Fox News Sponsored Stories Ad in each news page

CBS News Banner Ad Banner ad associated with each
news title and brief introduction

AP Mobile Banner Ad
Bottom banner ad in each page

Tattoo My Photo Banner Ad

an Intel Core i5 2.5GHz machine with Windows 10 and 8GB

memory.

In our experiments, we specify the UI elements that rep-

resent the unwanted features based on our understanding of

the expected app behavior. The unwanted components include

normal functionalities that certain users may not need (e.g.,

word related additional information on the main page in a

dictionary app), irrelevant buttons (e.g., a button leading to

a news page in a calendar app) and advertisements. More

details can be found in Table I. We manually obtain the

corresponding IDs of the specified UI elements. TOFU then

automates the aforementioned analysis and the generation of

the modified APK file. Specifically, given an app, we run it

to the pages containing UI components correlated with the

unwanted functionalities in a Nexus 6P running Android 6.0.1.

We then use the Android SDK tool UIAutomator Viewer to

obtain the dynamic UI hierarchy, on which we select the

components to be removed (corresponding to the unwanted

features). We feed the corresponding information (IDs of

layouts and UI elements) to TOFU. TOFU then statically

analyzes the app code, removes the code elements marked

as removable and rewrites the modified code to DEX files,

constructing a new APK file. Next, we sign the APK file and

run it in the same device in order to measure the savings

resulting from our code reduction.

Each pair of apps (original and modified) are kept running

for 10 minutes and then their power use is examined. Since

the power consumption profiler rounds the result up to an

integer, it may not be able to tell the differences in some

cases. If the values are not distinguishable, we continue to

test the pair of apps for another 20 minutes. For each app,

at the beginning of first run, we disable potential live content

update (e.g., push notifications) that may largely influence the

results. For example, the app AP Mobile updates its displayed

live news in the background. If we allow all the categories

(e.g., Sports, Entertainment) to update, in a 10-minute run, we

observed 73MB of data usage, 9 minutes of CPU time and 20

mAh of power use. After unsubscribing all categories except

the Top News, the data usage is reduced to less than 10MB.

A. Experiment Results

Our evaluation aims to measure the benefits of our code

reduction with regards to two aspects: data usage and bat-

tery usage. To evaluate the data usage reduction, we select
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Remove-Stmt-1
Γ1 ⊢ l : UIRelated

Γ4 ⇒ [l : Removable]Γ4

Unremove-Stmt
InputUIData(ld) ∈ Γ3(lǫ) MR(ld) Γ1(l) 6= UIRelated

Γ4 ⇒ [l : Unremovable]Γ4

Remove-Stmt-2
InputUIData(ld) ∈ Γ3(lǫ) ¬MR(ld) Γ4(l) 6= Unremovable

Γ4 ⇒ [l : Removable]Γ4

Remove-Method
nonApi(m) ∀(x :=l y.m(z)),Γ4 ⊢ l : Removable

Γ4 ⇒ [m : Removable]Γ4

Remove-Class
nonFrameworkClass(k) ∀(x :=l new k(y)), Γ4 ⊢ l : Removable

Γ4 ⇒ [k : Removable]Γ4

Remove-Stmts
Γ4 ⊢ m : Removable l ∈ statementsIn(m)

Γ4 ⇒ [l : Removable]Γ4

Remove-Methods
Γ4 ⊢ k : Removable m ∈ methodsIn(k)

Γ4 ⇒ [m : Removable]Γ4

Fig. 11. Rules for removing code elements.

TABLE II
EXPERIMENT RESULTS.

App
Data Usage CPU Total Wi-Fi Running Computed Power Use

Original Modified Reduction Original Modified Reduction Original Modified Reduction Original Modified Reduction

WeatherBug 16.84MB 15.33MB 9.0% 2m05s 1m59s 4.8% 8m02s 5m48s 27.8% 5mAh 4mAh 20.0%

Dictionary.com 6.21MB 3.20MB 48.5% 4m22s 3m56s 9.9% 32s 21s 34.4% 8mAh 7mAh 12.5%

Baidu iKnow 3.86MB 2.42MB 37.3% 2m08s 1m18s 39.1% 1m07s 1m06s 1.5% 5mAh 3mAh 40.0%

Walmart 29.67MB 23.02MB 22.4% 8m08s 7m58s 2.0% 1m50s 1m03s 42.7% 17mAh 14mAh 17.6%

Macy’s 30.09MB 24.32MB 19.2% 6m06s 4m35s 24.9% 22s 21s 4.5% 11mAh 8mAh 27.3%

China Calendar 8.49MB 7.26MB 14.5% 9m35s 6m24s 33.2% 32s 24s 25.0% 16mAh 11mAh 31.3%

Fox News 8.71MB 5.52MB 36.6% 6m56s 6m43s 3.1% 27s 19s 29.6% 21mAh 18mAh 14.3%

CBS News 9.55MB 5.21MB 45.4% 8m00s 2m40s 66.7% 38s 27s 28.9% 17mAh 5mAh 70.6%

AP Mobile 9.63MB 7.09MB 26.4% 4m55s 1m44s 67.4% 21s 12s 42.9% 12mAh 6mAh 50.0%

Tattoo My Photo 12.79MB 10.04MB 21.5% 10m13s 1m00s 90.2% 41s 31s 24.2% 25mAh 2mAh 92.0%

Average 28.1% 34.1% 26.2% 37.6%

removable UI elements that are correlated to network access

and measure the incurred data usage before and after their

removal. Similarly, to evaluate the battery usage, we measure

the app’s total CPU time, Wi-Fi running time and computed

power use before and after the code reduction. We obtain this

detailed information through the Setting app. We present the

experiment results in Table II.

From Table II, we observe that removing some unwanted

functionalities and associated UI elements has a minimum

reduction of 9.0% for data usage (WeatherBug), 2.0% for total

CPU time (Walmart), 1.5% for Wi-Fi running time (Baidu

iKnow) and 12.5% for the computed power use (Dictio-

nary.com). The maximum reductions for the four factors are

48.5%, 90.2%, 42.9% and 92.0%, respectively. Eventually, we

obtain average reductions of 28.1%, 34.1%, 26.2% and 37.6%

for the four factors, which demonstrate the effectiveness of

our approach.

Figure 12 depicts the time required to analyze the 10 apps

alongside their DEX code size. As shown, the analysis time

increases as the code size increases. We have also observed

that apps with more complex removable functionalities take

longer time to be analyzed. For example, the WeatherBug app

(see Section II) requires more than 10 minutes to finish the

analysis while the China Calendar app, in which a button is

disabled, only needs one and a half minutes.

0.00
5.00

10.00
15.00
20.00
25.00
30.00

Analysis Time (Minute) Size(MB)

Fig. 12. App analysis time and the DEX code size.

Search Box

Word of the Day

Blog

Slideshow

(a) App Dictionary.com

clicking

Main Page

News Page

(b) App China Calendar

Fig. 13. Screenshots of Dictionary.com and China Calendar.

B. Case Studies

In the following, we use a few cases to illustrate the

application of our approach.
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1) Removing Unwanted App Components: We use un-

wanted app components to refer to those UI elements that

display information provided by the app providers (not third-

party advertisement) but are probably unwanted by the users,

e.g., the WEATHER NEWS in the WeatherBug app (Figure 1).

Here, we study one more case from the Dictionary.com app

in this section.

As shown in Figure 13a, the main page of the app contains

a search box, a tag for the word of the day and a list of other

topics about language, grammar, etc. Usually, a user launches

the app to look for words and does not expect to be distracted

by the other irrelevant contents, which inevitably consume

additional data and battery. In our experiment, we remove

the irrelevant contents (blog and slideshow features) from the

app, which are populated through some background services.

Specifically, TOFU first locates the program locations firing

the background actions and then disables their invocations.

As a result, the blog and slideshow tags are prevented from

being displayed on the main page, leading to 48.5% data usage

reduction and 12.5% power usage reduction.

2) Removing Unwanted User Actions: The China Calendar

app (com.veryapps.hl) helps users explore the lunar calendar

(e.g., current lunar day, auspicious information, etc.). However,

the app contains a button in the main page, which once clicked,

launches a new page acting similar to a news app (Figure 13b).

Accidentally clicking the button will cause unexpected data

usage and battery consumption. The implementation is as

follows:

1 // in class MainActivity

2 public void onCreate(Bundle b) {//omitted operations

3 btn = findViewById(R.id.btn_news_category);

4 btn.setOnClickListener(this);

5 }

6 public void onClick(View v) {

7 Intent i = new Intent(this, NewsCategoryActivity.class);

8 startActivity(i);

9 }

The button handler is simplified in method onClick at

line 6, in which a new activity presenting the news is started

(line 8). The unwanted UI element is referred to at line 3.

TOFU forwardly tracks the uses of the UI element and types

lines 3 and 4. It further tracks and types the button handler

and the launched activity. After reduction (e.g., lines 3 and

4), the functionality of the button is disabled. Based on our

experiment, the removal saves 14.5% of data usage, 33.2% of

CPU time, 25% of Wi-Fi running time and 31.3% of power

use when we click the button in original app once per minute

for 10 minutes.

3) Removing Advertisements: Advertisements are com-

monly used in Android apps for monetization purposes. How-

ever, mobile advertisements have long been considered a

source of distraction for users [11], responsible for additional

network data and power consumption, not to mention the risks

of privacy leaks and potentially malicious behaviors exhibited

by advertisement libraries [4], [5], [6].

Banner ad, displayed usually at the bottom of the screen (see

Figure 1), is the most common type of mobile advertisement.

As shown in Table II, removing the banner ads in apps (CBS

1 class ArticleFragment ... {

2 LoaderCallbacks callback; OAdapter madapter;

3 ArrayList contents;

4 ArticleFragment() {

5 callback = new LoaderA(this);

6 madapter = new OAdapter(...);

7 }

8 void onActivityCreated(Bundle b) {

9 loaderManager.initLoader(..., callback);

10 }

11 }

12 class LoaderA implements LoaderCallbacks {

13 ArticleFragment fragment;

14 Loader onCreateLoader(int i, Bundle b) {

15 return new OLoader(...);

16 }

17 void onLoadFinished(Loader l, Object d) {

18 fragment.contents = (ArrayList) d;

19 fragment.madapter.updateContent((ArrayList)d);

20 }

21 }

22 class OAdapter ... {

23 ArrayList alist;

24 void updateContent(ArrayList list) {

25 alist.addAll(list);

26 this.notifyDataSetChanged();

27 }

28 View getView(int pos, View v, ViewGroup vg) {

29 vv = inflater.inflate(...);//unwanted UI

30 content = alist.get(pos);

31 vv.set(content);//detail omitted

32 }

33 }

UIRelated UIData InputUIData

Fig. 14. Code snippet for Fox News.

News, AP Mobile and Tattoo My Photo) has led to a significant

reduction of data usage and battery consumption.

App Fox News adopts another type of advertisement, which

displays several pieces of ad titles and images. We noticed that

such advertisement is heavily integrated with the app code,

compared with the simple banner ad, as shown in Figure 14.

We also show in the same figure what the correlated statements

are typed with. For example, in their own calling context,

line 29 is typed with UIRelated in Γ1 and line 18 is typed

with UIData in Γ2 and InputUIData in Γ3. The classes

LoaderA and OAdapter are only used as shown in the

code snippet and thus all the typed statements are removable.

Our analysis further locates the trigger for the background

functionality at line 9 to disable its invocation. According to

Table II, removing the unwanted advertisement in this app

results in 36.6% of data usage reduction and 14.3% of power

use reduction.

C. Discussion

As mentioned in the introduction, our technique is intended

to help the development team automatically generate various

customizations and personalizations of an app, at the end

of development cycle. It is also desirable for retrofitting

legacy apps whose source code or original developers are no

longer available. For instance, instead of patching a security

vulnerability in a legacy app, the maintenance team may

choose to remove the corresponding feature. While it is a valid

concern that disabling some features such as advertisements

may have negative impact on the income of the development

team, we anticipate that an alternative business model is for the

development team to sell customized versions at a higher price

to compensate for the loss. A more aggressive business model
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may be to sell the right of customization (using a technique

like ours that is certified by authorities) to the end users (e.g.,

enterprises) such that the customized versions will be signed

by the original development team or some authorized party on

their behalf to avoid possible legal issues.

As an initial effort of customizing apps by removing fea-

tures, our technique is limited to reducing features associ-

ated with given UI elements. We expect in the future more

techniques can be developed to customize/reduce other app

features (e.g., background tasks not related to UIs).

In addition, our analysis inherits the limitations of Android

app analysis [12], [13], [14]. Specifically, our approach re-

quires a precise and complete call graph which is usually

not satisfied in Android app analysis. Context-sensitive anal-

ysis, as depicted in Section III, is resource intensive, which

inevitably hinders arbitrary app code reduction. Besides, the

underlying rewriting framework Soot limits the capability of

our prototype. Even though all the 10 apps run well without

errors after code reduction, we found that some other apps

(e.g., CNN) don’t work correctly after the transformation of

DEX code by Soot, even if we remove nothing in the code.

In addition, removing UI elements (e.g., advertisements) that

are embedded in HTML pages rendered by WebView is not

supported.

While our technique has usability in consideration to begin

with as it allows users to express their needs through the UI,

which is far more intuitive than some formal specification

language, the implementation is still a research prototype

whose user interface has many places to improve.

V. RELATED WORK

Techniques have been proposed for detecting arbitrary third-

party libraries, including ad libraries, in Android apps. Some

rely on simple techniques such as white-listing namespaces of

popular ad libraries [15], [16]. Narayanan et al. distinguished

primary and non-primary modules of apps through hierarchical

clustering [17] whereas Liu et al. developed a classifier for ads

detection based on code features and package relationship [18].

LibRadar [19] relies on API frequencies. Along the same line,

Backes et al. proposed an obfuscation resilient ad detection

technique, through extracting profiles resilient to common

obfuscation techniques and relying on class-hierarchy rather

than code [20]. In comparison, our technique is more general.

It focuses on removing features indicated by users on the UI,

not just ads. It does not rely on specific code patterns.

There are also techniques that detect redundancy in appli-

cations [21], [22], [23], [24]. Their purpose is to make the

software systems more resilient to failures and to leverage

duplicated code as test oracles. They are complementary to

our technique as redundant code can be removed/replaced for

better quality. They discover redundant code starting from

faulty components in programs while our approach starts from

user specification of UI information.

In addition, a lot of works aim at improving energy

efficiency. Gottschalk et al. detected and removed energy-

wasting code in Android apps with the knowledge of energy-

inefficiency patterns [25], [26]. Sahin et al. studied energy

consumption caused by code obfuscation in mobile apps [27].

Gui et al. measured energy consumption of mobile ads [28].

Banerjee et al. proposed a technique of refactoring Android

apps to enhance energy efficiency following a set of guide-

lines [29]. Wu et al. statically detected energy defects in

app UIs with predefined energy draining patterns [30]. Our

proposed approach doesn’t rely on code patterns, nor does it

require domain knowledge to work properly. Energy saving

occurs because of the removal of selected unwanted features.

Martins et al. presented TAMER to improve battery lifetime

by instrumenting the Android OS and interposing events and

signals that cause background task wakeups [31]. Linares-

Váseuez et al. [32] and Li et al. [33] proposed approaches

for reducing display energy through automatically changing

the color schemes.

There are works using UI information to detect attacks or

privacy leaks. AsDroid [34] uses UI information to confirm

whether a program behavior is expected by the app user.

SUPOR [35], UIPicker [36] and BidText [37] utilize UI

information to check data sensitiveness displayed or entered

on UI. In particular, BidText [37] features a type system

for information disclosure detection by recognizing the text

information as types and performs type propagation along data

flows. The type-based taint analysis system developed by Ernst

et al. predefines a few security types and checks if types reach

a program point are compatible [38].

VI. CONCLUSION

We propose a static technique to remove code elements

in Android apps. The code elements are relevant to user

specified unwanted UI elements. The approach identifies the

program locations directly referring to the specific UI elements

and applies a type system to infer removable code elements.

Each reachable code element is tagged with a type that is

propagated. The types are used to determine whether the

corresponding code elements are removable or not. In addition

to removing code elements that are related to the specified UI

elements, our technique is also able to discover the associated

background functionalities and type the corresponding code

elements in the background functionalities such that they can

be removed too. We implement a prototype and evaluate it

on 10 real-world Android apps. The results show that our

approach can accurately identify removable code elements

associated with the specified UI elements and removing those

functionalities leads to substantial resource savings.
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