
STATIC ANALYSIS OF ANDROID APPS WITH TEXT ANALYSIS AND

BI-DIRECTIONAL PROPAGATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jianjun Huang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2017

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science, Purdue University

Dr. Ninghui Li

Department of Computer Science, Purdue University

Dr. Vernon J. Rego

Department of Computer Science, Purdue University

Dr. Lin Tan

Department of Electrical and Computer Engineering, University of Waterloo

Approved by:

Dr. Voicu S. Popescu by Dr. William J. Gorman

Head of the School Graduate Program

iii

This work is dedicated to my wife Jie Zhang.

水过竞千帆，遥遥汪洋叹。
屈指昼夜轮，多少日月转。
文章千古事，史载三两篇。
回首明镜里，仍是旧时颜。
我取昆仑胆，谢氏堂前燕。
张眼睥天下，捷书先流传。

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my special appreciation and deepest gratitude

to my advisor, Professor Xiangyu Zhang. I would like to thank him for his extraordinary

guidance, encouragement and patience during my whole PhD study. He provided me the

freedom to work on topics I was interested in. When I got stuck, he was always there to help

and made sure I was headed in the right direction. He stayed up late at night with me for

submission deadlines. He polished all my writings and provided me valuable suggestions

for improving my professional writing skills. He took the time from his busy schedule and

helped me to get prepared for presentations and job talks. I am so fortunate to have him as

my advisor.

I would like to sincerely thank Professor Lin Tan. She guided me in the research of text

analysis. I would also like to thank Professor Ninghui Li and Professor Vernon Rego for

their time and efforts to serve on my PhD committee. I thank them for all of their valuable

inputs and suggestions. I also thank Professor Tiark Rompf, Professor Hubert Dunsmore,

and Professor Bharat Bhargava for serving on my qualifying/preliminary exam committee

and their suggestions.

I would like to thank Dr. Zhichun Li and Dr. Zhenyu Wu in NEC Labs, Dr. Xusheng

Xiao in Case Western Reserve University, and Dr. Chen Tian in Huawei for their helps

during my intern and efforts on my research and paper writing.

I would like to extend my thanks to the research group members, Dr. Yunhui Zheng,

Dr. Tao Bao, Dr. Peng Liu, Dr. Yousra Aafer, Yonghwi Kwon, Weihang Wang and Shiqing

Ma for their kind discussions and helps in both research and real life.

Finally, I would also thank my parents, Shaoyan Huang and Maoxiu Li, and my wife,

Jie Zhang, for their love, support and encouragement. Without them, this dissertation could

not have happened.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Contributions . 3
1.3 Dissertation Organization . 4

2 SUPOR: PRECISE AND SCALABLE SENSITIVE USER INPUT DETECTION
FOR ANDROID APPLICATIONS . 5
2.1 Introduction . 5
2.2 Background and Motivation Example . 9

2.2.1 Necessary Support for Static Sensitive User Input Identification . . . 9
2.2.2 Android UI Rendering . 11
2.2.3 UI Sensitiveness Analysis . 13
2.2.4 Natural Language Processing . 15

2.3 Design of SUPOR . 16
2.3.1 Threat Model . 16
2.3.2 Overview . 16
2.3.3 Layout Analysis . 17
2.3.4 UI Sensitiveness Analysis . 19
2.3.5 Variable Binding . 23
2.3.6 Keyword Dataset Construction . 24

2.4 Implementation . 26
2.5 Evaluations and Experiments . 29

2.5.1 Evaluation Setup . 29
2.5.2 Performance Evaluation . 30
2.5.3 Effectiveness of UI Sensitiveness Analysis 31
2.5.4 Accuracy of Detecting Sensitive User Input Disclosures 35
2.5.5 Case Studies . 37

2.6 Discussion . 40
2.7 Related Work . 41
2.8 Summary . 43

vi

Page

3 BIDTEXT: DETECTING SENSITIVE DATA DISCLOSURE VIA BI-DIRECTIONAL
TEXT CORRELATION ANALYSIS . 44
3.1 Introduction . 44
3.2 Motivating Example . 46
3.3 Design . 51

3.3.1 Language Abstraction . 52
3.3.2 Type System and Bi-directional Propagation 53
3.3.3 Practical Enhancements . 59
3.3.4 Disclosure Analysis . 64

3.4 Implementation . 65
3.5 Evaluation . 66

3.5.1 Pilot Study . 67
3.5.2 Unification vs. Bi-directional Propagation 67
3.5.3 Large Scale Evaluation . 68
3.5.4 Discussion . 77

3.6 Related Work . 77
3.7 Summary . 79

4 ASDROID: DETECTING STEALTHY BEHAVIORS IN ANDROID APPLI-
CATIONS BY USER INTERFACE AND PROGRAM BEHAVIOR CONTRA-
DICTION . 80
4.1 Introduction . 80
4.2 Motivating Example . 83
4.3 Design . 86

4.3.1 Intent Propagation . 88
4.3.2 UI Compatibility Check . 95

4.4 Evaluation . 99
4.4.1 Case Studies . 104

4.5 Limitations . 107
4.6 Related Work . 107
4.7 Summary . 109

5 CONCLUSION . 110

REFERENCES . 113

VITA . 122

vii

LIST OF TABLES

Table Page

2.1 UI features in different mobile OSes. 11

2.2 Scores of the text labels in Figure 2.8. 22

2.3 Part of keyword dataset. 26

2.4 Statistics of 16,000 apps. 30

2.5 UI analysis details for 20 randomly chosen apps. 33

3.1 Manually inspected evaluation results for 100 apps. 74

4.1 Experiment results. 99

viii

LIST OF FIGURES

Figure Page

2.1 Example sensitive user inputs. 6

2.2 Simplified layout file login_activity.xml. 11

2.3 Simplified activity example. 12

2.4 Parse tree of an example sentence. 14

2.5 Overview of SUPOR. 17

2.6 UI model for Figure 2.1 on 480x800 screen. Only the ID, relative coordinates
and text of the widgets are presented here. 19

2.7 The partition of the UI is based on the boundary of the input field. 21

2.8 Example for UI widget sensitiveness analysis. 22

2.9 False positive example in UI sensitiveness analysis. 35

2.10 True positives and false positives by source/sink categories for the reported apps. 36

2.11 Case study: National ID and password disclosure example without protection. . 37

2.12 Case study: Credit card information disclosure example. 38

2.13 Case study: Health information disclosure. 39

3.1 Motivating example from app com.buycott.android. 47

3.2 Data flow (solid arrows) and type propagation (dashed arrows) for Figure 3.1. . . 48

3.3 Language. 51

3.4 Bi-directional propagation rules. 54

3.5 App com.mojo.animewallpaper: code example and bi-directional propagation
for φ . 57

3.6 Abstraction and propagation rules for check-and-alert cases. 59

3.7 Propagation graph for a simple string concatenation. 61

3.8 Propagation rules for string concatenation. 61

3.9 Computing abstract strings. 62

ix

Figure Page

3.10 Distribution of accumulative analysis time for all apps. 69

3.11 Distribution for the analysis time (in minutes) of the apps reported with sensi-
tive data disclosures. 69

3.12 Breakdown of the reported apps. 70

3.13 Comparing BIDTEXT with static tainting (tracking specific APIs) and SU-
POR [59]. 71

3.14 Length distribution of the emitted paths for the reported apps. X-axis shows
the length of the paths. 73

4.1 Simplified code snippet for app Qiyu. 84

4.2 Call graph and intent propagation in app Qiyu. 85

4.3 Datalog atoms for intent propagation and correlation. 89

4.4 Datalog rules for intent propagation and correlations 90

4.5 ICC call chain example in app GoldDream. 91

4.6 Intent correlation example in app Shanghai 1930. 94

4.7 The keyword cover set for the SendSms intent. The y-axis denotes the percent-
age of top level functions that can be uniquely covered by a keyword (pair).
. 98

4.8 Breakdown of the top level functions with intents. Activity lifecycle methods
include onCreate() and onStart() of an activity. onReceive() and
the other categories do not have associated UI. 102

4.9 Analysis time. The detection results are also annotated on top of each bar
with ‘@’ denoting true positive(red), ‘X’ false positive(black) and ‘N’ false
negative(yellow). Since an app may have multiple intents, it may be annotated
with multiple labels. The last 3 apps exceeded the max timeout 30 mins. . . . 103

4.10 Code example in app iCalendar. 105

4.11 Code example in app HitPP. 106

x

ABBREVIATIONS

API Application Program Interface

JSON JavaScript Object Notation

UI User Interface

GUI Graphical User Interface

URL Uniform Resource Locator

WALA T. J. Watson Libraries for Analysis

APK Android Package Kit

DEX Dalvik Executable Format

ICC Inter-Component Communication

SDK Software Development Kit

ADT Android Development Tools

SMS Short Message Service

IR Intermediate Representation

SSA Static Single Assignment

IMEI International Mobile Equipment Identity

NLP Natural Language Processing

APP (Android) Application

WYSIWYG What You See Is What You Get

IDE Integrated Development Environment

LHS Left Hand Side

RHS Right Hand Side

FP False Positive

TP True Positive

FN False Negative

xi

ABSTRACT

Huang, Jianjun PhD, Purdue University, December 2017. Static Analysis of Android Apps
with Text Analysis and Bi-directional Propagation. Major Professor: Xiangyu Zhang.

While smartphones and mobile apps have been an integral part of our life, personal

security issues on smartphones become a serious concern. Privacy leakage, namely sen-

sitive data disclosures, happens frequently in mobile apps to disclose the user’s sensitive

information to untrusted, even malicious, third-party service providers, leading to serious

problems. Besides, stealthy behaviors that are performed without the user’s acknowledg-

ment may cause unexpected phone charges or leakage of sensitive information.

To address these problems, many approaches have been proposed. However, previous

mobile privacy related research efforts have largely focused on predefined known sources

managed by smartphones. More specifically, they focus on the API functions that directly

return sensitive values. Some other information sources, such as the user inputs through

user interface and data obtained from network or files, have been mostly neglected, even

though such sources may contain a lot of sensitive information. In addition, the research

efforts on detecting stealthy behaviors also depend on identifying suspicious behaviors with

known actions, e.g., known premium phone numbers or URLs of malicious websites.

In this dissertation, we present two automated techniques for the purpose of compre-

hensively sensitive data disclosure detection. Moreover, we propose a novel technique to

detect stealthy behaviors in Android apps.

Firstly, we examine the possibility of scalably detecting sensitive user inputs from mo-

bile apps. We design and implement SUPOR, a novel static analysis tool that automati-

cally examines the user interface to identify sensitive user inputs containing critical user

data, such as user credentials, finance and medical data. SUPOR mimics from the user’s

perspective to associate input fields in user interfaces with most correlated text labels and

xii

utilizes text analysis to determine the sensitiveness of the user inputs. With the knowledge

of sensitive user inputs, we are then able to detect their disclosures with the help of taint

analysis.

Secondly, we develop BIDTEXT to address the issues of detecting sensitive data disclo-

sures where the data is generated by generic API functions whose return values cannot be

easily recognized as sensitive or insensitive. BIDTEXT leverages the context of the data,

associates the correlated text labels to corresponding variables and then applies text anal-

ysis to determine the sensitiveness of the data held by the variables. The intuition here is

that the context of programs contains useful information to indicate what the variables may

hold. BIDTEXT also features a novel bi-directional propagation technique through forward

and backward data-flow to enhance static sensitive data disclosure detection.

Thirdly, we develop AsDroid to detect stealthy behaviors in Android apps by checking

the contradiction between user expectation, which is represented by user interface, and

program behavior that can be abstracted by API invocations. We model API invocations

with different types of intents and backwardly propagate the intents to top level functions,

e.g., a user interaction function. We then analyze the text extracted from the user interface

component associated with the top level function. Semantic mismatch of the two indicates

stealthy behavior.

To sum up, in this dissertation, we present SUPOR to detect sensitive user inputs, and

BIDTEXT to determine the sensitiveness of the data generated by generic API functions.

We also propose bi-directional propagation to enhance sensitive data disclosure detection.

In addition, we inspect the contradiction between program behaviors and user expectations

to detect stealthy behaviors in Android apps.

1

1 INTRODUCTION

While smartphones and mobile apps have been an essential part of our life, personal secu-

rity issues on smartphones, including privacy and malicious behaviors, become a serious

concern.

Privacy Issues. Previous mobile privacy related research efforts have largely focused

on predefined known sources managed by smartphones. More specifically, they focus on

the API functions that return sensitive values, such as device identifiers (phone number,

IMEI, etc.), location, contact, calendar, browser state, most of which are permission pro-

tected. although these data sources are very important, they do not cover all sensitive data

related to users’ privacy.

A major type of sensitive data that has been largely neglected is the sensitive user input,

which refers to the sensitive information entered by users via the user interface. Many

mobile apps today acquire sensitive credentials, financial, health, and medical information

from users through the user interfaces. While all kinds of user inputs, either sensitive or

insensitive are retrieved in the code via the same API functions, traditional sensitive data

disclosure detection techniques that require predefined data sources are not enough because

they lack mechanism of deciding the sensitiveness of those API returns. In the context of

static detection of mobile apps, prior to performing sensitive data disclosure detection, we

must resolve the challenges of discovering the input fields from an app’s user interface,

identifying which input fields are sensitive and associating the sensitive input fields to the

corresponding variables in the code.

On the other hand, existing techniques require the data sensitiveness of the sources to

be known before the static detection is conducted. Even the above problem is related to de-

termine the data sensitiveness based on where the data is produced. With the knowledge of

sensitiveness at the source points, a forward data flow needs to be observed between sources

and sinks in order to report a disclosure defect. However, some generic API functions may

2

return sensitive values, depending on the context, although they may return insensitive val-

ues in many cases, and we have no way to understand the data sensitiveness from where

the data is generated. For example, a local file or the network response may contain sen-

sitive values but given the file or the network request, we cannot claim the sensitiveness

of the response. In such cases, most existing approaches would not work properly. We

cannot simply treat the generic API functions as the sensitive data sources as that will lead

to a large number of false warnings, or just ignore all of such cases because we can expect

missing warnings. In addition, forward data flow analysis is insufficient. In many cases,

a piece of data may be first emitted through a sink and then later recognized as sensitive

somehow.

Stealthy Behaviors. Detecting malicious behaviors, especially stealthy behaviors, are

also a hot research topic. Existing techniques mainly depends on identifying certain known

fingerprints of the malicious operations in Android apps. For example, if an app contains

directly making phone calls or sending short messages to a known premium numbers, or

accessing a URL of known malicious website, the app will be reported as malware. More

sophisticated cases cannot be detected. For instance, adversaries may obfuscate the num-

bers or URLs in the code such that static analysis is not able to understand whether the

numbers or URLs are blacklisted. Besides, maintaining a blacklist of the numbers and

URLs are not trivial. In some countries, the premium numbers are the same as normal

phone numbers. They can also be actively changed to avoid the blacklist detection. Since

the code behaviors, represented by API invocations, of malicious actions and benign oper-

ations are the same, we cannot report malicious behaviors by only inspecting the API calls

when we do not know whether the destinations are good or bad.

1.1 Thesis Statement

This dissertation addresses the important issue on the detection of sensitive data dis-

closures in mobile apps by presenting two approaches. First, it proposes SUPOR, a static

technique that can automatically, scalably and precisely detect the data sensitiveness of user

3

inputs from user interfaces. Second, it introduces BIDTEXT, a technique that can recog-

nize the sensitiveness of data generated from even more generic API functions, such as data

from network or files. The dissertation also presents AsDroid to detect stealthy behaviors

in Android apps.

The thesis statement is as follows: Existing privacy related techniques that have mostly

focused on predefined sensitive data sources are not enough to detect sensitive data disclo-

sures, when the data generated by some generic API functions (such as reading data from

user interface, files, network and so on) are neglected; and utilizing maliciously known des-

tinations to detect stealthy behaviors is not sufficient. Proposing an automated technique

to identify the sensitiveness of user inputs can help the detectors discover the sensitive

user input disclosure problems. Introducing the bi-directional text correlation analysis can

handle even more cases in which the data sensitiveness cannot be determined at the data

generation points. Combining code behavior analysis and user interface analysis can tell

whether certain program behaviors contradict the user expectation, namely, whether they

are stealthy behaviors.

1.2 Contributions

The contributions of this dissertation are as follows:

• We propose SUPOR, a static technique that can automatically, scalably and precisely

determine the data sensitiveness of user inputs in Android apps. SUPOR achieves the

following three challenging goals: (1) it systematically discovers the input fields from

an app’s UI; (2) identifies which input fields are sensitive by associating the input

fields with mostly correlated text labels and performing text analysis to determine

whether the user inputs contain sensitive data; (3) and associates the sensitive input

fields to the corresponding variables in the apps that store their values.

• We design and develop a novel technique, BIDTEXT, to statically detect sensitive

data disclosures in Android apps while the data can be generated from more generic

API functions like reading from files or network. Since the data sensitiveness of

4

such generic API functions cannot be determined from the definition locations, we

address the challenges by typing the correlated text labels to corresponding variables

and propagating them bi-directionally along forward and backward data-flow. The

problem is formalized in a type system and we have obtained some preliminary re-

sults for the prototype we implement.

• We present AsDroid to statically detect stealthy behaviors in Android apps without

the knowledge of maliciously destinations like premium numbers, malicious URLs.

We resolve the problem by inspecting the contradiction between user expectation and

program behaviors. The former one can be abstracted from the user interface and the

latter one is represented by API invocations. We propagate the intents of API calls

to top level functions and then check if they mismatch with what the associated user

interface indicates. The analysis is formalized by datalog rules.

1.3 Dissertation Organization

This dissertation is organized as follows:

Chapter 2 discusses the design, implementation and evaluation of SUPOR. Chapter 3

details the problem of detecting sensitive data disclosures for generic data and how we

solve the problem through bi-directional text correlation analysis. Chapter 4 talks about

the motivation, design and evaluation of AsDroid to detect stealthy behaviors.

5

2 SUPOR: PRECISE AND SCALABLE SENSITIVE USER INPUT DETECTION

FOR ANDROID APPLICATIONS

While smartphones and mobile apps have been an essential part of our life, privacy is

a serious concern. Previous mobile privacy related research efforts have largely focused

on predefined known sources managed by smartphones. Sensitive user inputs through UI

(User Interface), another information source that may contain a lot of sensitive information,

have been mostly neglected.

In this section, we examine the possibility of scalably detecting sensitive user inputs

from mobile apps. In particular, we design and implement SUPOR, a novel static analysis

tool that automatically examines the UIs to identify sensitive user inputs containing critical

user data, such as user credentials, finance, and medical data. SUPOR enables existing pri-

vacy analysis approaches to be applied on sensitive user inputs as well. To demonstrate the

usefulness of SUPOR, we build a system that detects privacy disclosures of sensitive user

inputs by combining SUPOR with off-the-shelf static taint analysis. We apply the system

to 16,000 popular Android apps, and conduct a measurement study on the privacy disclo-

sures. SUPOR achieves an average precision of 97.3% and an average recall of 97.3%

for sensitive user input identification. SUPOR finds 355 apps with privacy disclosures

and the false positive rate is 8.7%. We discover interesting cases related to national ID,

username/password, credit card and health information.

2.1 Introduction

Smartphones have become the dominant kind of end-user devices with more units sold

than traditional PCs. With the ever-increasing number of apps, smartphones are becoming

capable of handling all kinds of needs from users, and gain more and more access to sen-

6

Figure 2.1.: Example sensitive user inputs.

sitive and private personal data. Despite the capabilities to meet users’ needs, data privacy

in smartphones becomes a major concern.

Previous research on smartphone privacy protection primarily focuses on sensitive data

managed by the phone OS and framework APIs, such as device identifiers (phone number,

IMEI, etc.), location, contact, calendar, browser state, most of which are permission pro-

tected. Although these data sources are very important, they do not cover all sensitive data

related to users’ privacy. A major type of sensitive data that has been largely neglected are

the sensitive user inputs, which refers to the sensitive information entered by users via the

User Interface (UI). Many apps today acquire sensitive credentials, financial, health, and

medical information from users through the UI. Therefore, to protect and respect users’

privacy, apps must handle sensitive user inputs in a secure manner that matches with users’

trust and expectations.

Figure 2.1 shows an example interface an app uses to acquire users’ login credentials

via input fields rendered in the UI. When users click the button “Login”, the app use the user

ID and password to authenticate with a remote service. As the developers may be unaware

of the potential risk on the disclosures of such sensitive information, the login credentials

are sent in plain text over an insecure channel (HTTP), which inadvertently compromises

users’ privacy.

7

In this section, we propose SUPOR (Sensitive User inPut detectOR), a static mobile

app analysis tool for detecting sensitive user inputs and identifying their associated vari-

ables in the app code as sensitive information sources. To the best of our knowledge, we

are the first to study scalable detection of sensitive user inputs on smartphone platforms.

Previously, there are many existing research efforts [1–9] on studying the privacy re-

lated topics on predefined sensitive data sources on the phone. Our approach enables those

existing efforts to be applied to sensitive user inputs as well. For example, with proper static

or dynamic taint analysis, one can track the privacy disclosures of sensitive user inputs to

different sinks. With static program analysis, one can also identify the vulnerabilities in

the apps that may unintentionally disclosure such sensitive user inputs to public or to the

attacker controlled output. One could also study how sensitive user inputs propagate to

third-party advertisement libraries, etc.

To demonstrate the usefulness of our approach, we combine SUPOR with off-the-shelf

static taint analysis to detect privacy disclosures of sensitive user inputs.

The major challenges of identifying sensitive user inputs are the following:

(i) How to systematically discover the input fields from an app’s UI?

(ii) How to identify which input fields are sensitive?

(iii) How to associate the sensitive input fields to the corresponding variables in the apps

that store their values?

In order to detect sensitive user inputs scalably, static UI analysis is much appealing,

because it is very difficult to generate test inputs to trigger all the UI screens in an app

in a scalable way. For example, an app might require login, which is difficult for tools to

generate desirable inputs and existing approaches usually require human intervention [10].

On the other hand, it is also extremely challenging to launch static analysis to answer the

aforementioned three questions for general desktop applications.

To this end, we have studied major mobile OSes, such as Android, iOS and Windows

Phone systems, and made a few important observations. Then, we implement SUPOR for

Android since it is most popular.

8

First, we find all these mobile OSes provide a standard rapid UI development kit as part

of the development framework, and most apps use such a homogeneous UI framework to

develop apps. Such UI framework usually leverages a declarative language, such as XML

based layout languages, to describe the UI layout, which enables us to statically discover

the input fields on the UI.

Second, in order to identify which input fields are sensitive, we have to be able to

render the UI, because the rendered UI screens contain important texts as hints that guide

users to enter their inputs, which can be used to identify whether the inputs are sensitive.

For instance, in Figure 2.1, the text “User ID” describes the nature of the first input field.

Statically rendering UI screens is generally very hard for arbitrary desktop applications.

However, with help of WYSIWYG (What You See is What You Get) layout editing feature

from the rapid UI development kits of mobile OSes, we are able to statically render the UI

for most mobile apps in order to associate the descriptive text labels with the corresponding

input fields. Furthermore, due to the relatively small screen size of smartphones, most text

labels are concise. As such, current NLP (Natural Language processing) techniques can

achieve high accuracy on identifying sensitive terms.

Third, all mobile OSes provide APIs to load the UI layouts made by rapid UI devel-

opment kits and to bind with the app code. Such a binding mechanism provides us oppor-

tunities to infer the relationship between the sensitive input fields from UI layouts to the

variables in the app code that store their values.

Our work makes three major contributions:

First, we devise a UI sensitiveness analysis that identifies the input fields that may

accept sensitive information by leveraging UI rendering, geometrical layout analysis and

NLP techniques. We modify the static rendering engine from the ADT (Android Developer

Tools), so that the static rendering can be done with an APK binary instead of source code,

and accurately identify the coordinates of text labels and input fields. Then, based on the

insight that users typically read the text label physically close to the input field in the screen

for understanding the purpose of the input field, we design an algorithm to find the opti-

mal descriptive text label for each input field. We further leverage NLP (nature language

9

processing) techniques [11–14] to select and map popular keywords extracted from the UIs

of a massive number of apps to important sensitive categories, and use these keywords to

classify the sensitive text labels and identify sensitive input fields. Our evaluation shows

that SUPOR achieves an average precision of 97.3% and an average recall of 97.3% for

sensitive user inputs detection.

Second, we design a context-sensitive approach to associate sensitive UI input fields

to the corresponding variables in the app code. Instances of sensitive input widgets in the

app code can be located using our UI analysis results in a context-insensitive fashion (i.e.

based on widget IDs). We further reduce false positives by adding context-sensitivity, i.e.

we leverage backward slicing and identify each input widget’s residing layout by tracing

back to the closest layout loading function. Only if both widget and layout identifiers

match with the sensitive input field in the XML layout, we consider the widget instance is

associated with the sensitive input field.

Finally, we implement a privacy disclosure detection system based on SUPOR and

static taint analysis, and apply the system to 16,000 popular free Android apps collected

from the Official Android Market (Google Play). The system can process 11.1 apps per

minute on an eight-server cluster. Among all these apps, 355 apps are detected with sen-

sitive user input disclosures. Our manual validation on these suspicious apps shows an

overall detection accuracy of 91.3%. In addition, we conduct detailed case studies on the

apps we discovered, and show interesting cases of unsafe disclosures of users’ national IDs,

credentials, credit card and health related information.

2.2 Background and Motivation Example

In this section, we provide background on sensitive user input identification.

2.2.1 Necessary Support for Static Sensitive User Input Identification

Modern mobile OSes, such as Android, iOS and Windows Phone system, provide

frameworks and tools for rapid UI design. They usually provide a large collection of stan-

10

dard UI widgets, and different layouts to compose the widgets together. They also provide

a declarative language, such as XML, to let the developer describe their UI designs, and

further provide GUI support for WYSIWYG UI design tools. In order to design a static

analysis tool for sensitive user input identification, we need four basic supporting features.

The rapid UI development design in modern mobile OSes makes it feasible to achieve such

features.

A: statically identify the input fields and text labels;

B: statically identify the attributes of input fields;

C: statically render the UI layout without launching the app;

D: statically map the input fields defined in the UI layouts to the app code.

These four features are necessary to statically identify the sensitive input fields on UIs.

In order to infer the semantic meaning of an input field and decide whether it is sensitive,

we need (i) the attributes of the input field; (ii) the surrounding descriptive text labels on

the UI. Some attributes of the input fields can help us quickly understand its semantics and

sensitiveness. For example, if the input type is password, we know this is a password-

like input field. However, in many cases, the attributes alone are not enough to decide

the semantics and sensitiveness of the input fields. In those cases, we have to rely on UI

analysis. A well-designed app has to allow the user to easily identify the relevant texts for

a particular input field and provide appropriate inputs based on his understanding of the

meaning of texts. Based on the above observation, we need Feature C to render the UI and

obtain the coordinates of input fields and text labels, so that we can associate them and

further reason about the sensitiveness of input fields. Once we identify the sensitive input

fields, we have to find the variable in the app code used to store the values of the input field

for further analysis.

We have studied Android, iOS and Windows Phone systems. As shown in Table 2.1,

all mobile OSes provide standard formats for storing app UI layouts that we can use to

achieve features A and B. All of them have IDEs that can statically render UI layouts for

the WYSIWYG UI design. If we reuse this functionality we can achieve static rendering

(feature C). Furthermore, all of them provide APIs for developers to map the widgets in

11

Table 2.1.: UI features in different mobile OSes.

Android iOS Windows Phone

Layout format XML NIB / XIB / Storyboard XAML/HTML

Static UI render ADT Xcode Visual Studio

APIs map widgets to code Yes Yes Yes

1 <LinearLayout android:orientation="vertical">

2 <TextView android:text="@string/tip_uid" />

3 <EditText android:id="@+id/uid" />

4 <TextView android:text="@string/tip_pwd" />

5 <EditText android:id="@+id/pwd"

android:inputType="textPassword" />

6 <Button android:id="@+id/login"

android:text="@string/tip_login"/>

7 </LinearLayout>

Figure 2.2.: Simplified layout file login_activity.xml.

layouts to the variables in the app code that hold the user inputs. Combined with static

program analysis to understand the mapping, we will be able to achieve feature D.

2.2.2 Android UI Rendering

For proof of concept, the current SUPOR is designed for the Android platform. An An-

droid app usually consists of multiple activities. Each activity provides a window to draw

a UI. A UI is defined by a layout, which specifies the dimension, spacing, and placement

of the content within the window. The layout consists of various interactive UI widgets

12

1 public class LoginActivity extends Activity implements

View.OnClickListener {

2 private EditText txtUid, txtPwd;

3 private Button btnReset;

4 protected void onCreate(Bundle bundle) {

5 super.onCreate(bundle);

6 setContentView(R.layout.login_activity);

7 txtUid = (EditText) findViewById(R.id.uid);

8 txtPwd = (EditText) findViewById(R.id.pwd);

9 btnLogin = (Button) findViewById(R.id.login);

10 btnLogin.setOnClickListener(this);

11 }

12 public void onClick(View view) {

13 String uid = txtUid.getText().toString();

14 String pwd = txtPwd.getText().toString();

15 String url = "http://www.plxx.com/Users/" + "login?uid=" +

uid + "&pwd=" + pwd;

16 HttpClient c = new DefaultHttpClient();

17 HttpGet g = new HttpGet(url);

18 Object o = c.execute(g, new BasicResponseHandler());

19 // following operations are omitted

20 }

21 }

Figure 2.3.: Simplified activity example.

(e.g., input fields and buttons) as well as layout models (e.g., linear or relative layout) that

describe how to arrange UI widgets.

At run time, when a layout file is loaded, the Android framework parses the layout file

and determines how to render the UI widgets in the window by checking the layout models

13

and the relevant attributes of the UI widgets. At the mean time, all UI widgets in the layout

are instantiated and then can be referenced in the code.

An example layout in XML is presented in Figure 2.2 and the code snippet of the corre-

sponding activity is shown in Figure 2.3. This layout includes five UI widgets: two text la-

bels (TextView), two input fields (EditText) and a button. They are aligned vertically

based on the LinearLayout at Line 1. The first text label shows “User ID” based on

the attribute android:text=“@string/tip_uid”, which indicates a string stored

as a resource with the ID tip_uid. The type attribute of the second input field is an-

droid:inputType=“textPassword”, indicating that it is designed for accepting a

password, which conceals the input after the users enter it. Instead of explicitly placing text

labels as in Figure 2.2, some developers decorate an input field with a hint attribute, which

specifies a message that will be displayed when the input is empty. For instance, develop-

ers may choose to display “User ID” and “Password” inside the corresponding input fields

using the hint attribute.

Figure 2.1 shows the rendered UI for the layout in Figure 2.2. The layout including

all the inner widgets is loaded into the screen by calling setContentView() at Line 6

in Figure 2.3. The argument of setContentView() specifies the reference ID of the

layout resource. Similarly, a runtime instance of a widget can also be located through a

findViewById() call with the appropriate reference ID. For example, the reference ID

R.id.uid is used to obtain a runtime instance of the input field at Line 7 in Figure 2.3.

2.2.3 UI Sensitiveness Analysis

Existing techniques usually consider permission protected framework APIs as the pre-

defined sensitive data sources. However, generic framework APIs, such as getText(),

can also obtain sensitive data from the user inputs. To precisely detect these sensitive

sources, we need to determine which GUI input widgets are sensitive.

Two kinds of information are useful for this purpose. First, certain attributes of the wid-

gets can be a good indicator about whether the input is sensitive. Using the inputType

14

S

VP NP

VB PRP NNNN

enter your phone numberyour phone number

Figure 2.4.: Parse tree of an example sentence.

attribute with a value “textPassword”, we can directly identify password fields. However,

not all sensitive input fields use this attribute value. The hint attributes also may contain

useful descriptive texts that may indicate the sensitiveness of the input fields.

Besides attributes of UI widgets, we observe that nearby text labels rendered in the UI

also provide indication about the sensitiveness of the widgets. For example, a user can

easily understand he is typing a user ID and a password when he sees the UI in Figure 2.1

because the text labels state what the input fields accept. In other words, these text labels

explain the purposes of the UI widgets, and guide users to provide their inputs. Based on

these observations, we propose to leverage the outcome of UI rendering to build a pre-

cise model of the UI and analyze the text labels and hints associated with the widgets to

determine their sensitiveness.

The major task of analyzing text labels is to analyze the text labels’ texts, which are

written in natural language. As smartphones have relatively small screens, the texts shown

in the UI are usually very concise and straightforward to understand. For example, these

texts typically are just noun/verb phrases or short sentences (such as the ones shown in Fig-

ure 2.1), and tend to directly state the purposes for the corresponding GUI widgets. Since

there is no need to analyze paragraphs or even long sentences, we propose a light-weight

keyword-based algorithm that checks whether text labels contain any sensitive keyword to

determine the sensitiveness of the corresponding GUI widgets.

15

2.2.4 Natural Language Processing

With recent research advances in the area of natural language processing (NLP), NLP

techniques have been shown to be fairly accurate in highlighting grammatical structure of

a natural language sentence. Recent work has also shown promising results in using NLP

techniques for analyzing Android descriptions [7, 15]. In our work, we adapt NLP tech-

niques to extract nouns and noun phrases from the texts collected from popular apps, and

identify keywords from the extracted nouns and noun phrases. We next briefly introduce

the key NLP techniques used in this work.

Our approach uses Parts Of Speech (POS) Tagging [11, 12] to identify interesting

words, such as nouns, and filter unrelated words, such as conjunctives like “and/or”. The

technique tags a word in a sentence as corresponding to a particular part of speech (such as

identifying nouns, verbs, and adjectives), based on both its definition and its relationship

with adjacent and related words in a phrase, sentence, or paragraph. The state-of-the-art

approaches can achieve around 97% [12] accuracy in assigning POS tags for words in

well-written news articles.

Our approach uses Phrase and Clause Parsing to identify phrases for further inspec-

tion. Phrase and clause parsing divides a sentence into a constituent set of words (i.e.,

phrases and clauses). These phrases and clauses logically belong together, e.g., Noun

Phrases and Verb Phrases. The state-of-the-art approaches can achieve around 90% [12]

accuracy in identifying phrases and clauses over well-written news articles.

Our approach uses Syntactic parsing [16], combined with the above two techniques, to

generate a parse-tree structure for a sentence, and traverse the parse tree to identify interest-

ing phrases such as noun phrases. The parse tree of a sentence shows the hierarchical view

of the syntax structure for the sentence. Figure 2.4 shows the parse tree for an example

sentence “enter your phone number”. The root node of the tree is the sentence node with

the label S. The interior nodes of the parse tree are labeled by non-terminal categories of

the grammar (e.g., verb phrases VP and noun phrases NP), while the leaf nodes are labeled

by terminal categories (e.g., pronouns PRP, nouns NN and verbs VB). The tree structure

16

provides a basis for other tasks within NLP such as question and answer, information ex-

traction, and translation. The state of the art parsers have an F1 score of 90.4% [17].

2.3 Design of SUPOR

In this section, we first present our threat model, followed by an overview of SUPOR.

Then, we describe each component of SUPOR in details.

2.3.1 Threat Model

We position SUPOR as a static UI analysis tool for detecting sensitive user inputs. In-

stead of focusing on malicious apps that deliberately evade detection, SUPOR is designed

for efficient and scalable screening of a large number of apps. Most of the apps in the app

markets are legitimate, whose developers try to monetize by gaining user popularity, even

though some of them might be a little bit aggressive on exploiting user privacy for revenue.

Malware can be detected by existing works [18–20], which is out of scope of this paper.

Though the developers sometimes dynamically generate UI elements in the code other

than defining the UI elements via layout files, we focus on identifying sensitive user inputs

statically defined in layout files in this work.

2.3.2 Overview

Figure 2.5 shows the workflow of SUPOR. SUPOR consists of three major compo-

nents: Layout Analysis, UI Sensitiveness Analysis, and Variable Binding. The layout anal-

ysis component accepts an APK file of an app, parses the layout files inside the APK file,

and renders the layout files containing input fields. Based on the outcome of UI rendering,

the UI sensitiveness analysis component associates text labels to the input fields, and deter-

mines the sensitiveness of the input fields by checking the texts in the text labels against a

predefined sensitive keyword dataset (Section 2.3.6). The variable binding component then

searches the code to identify the variables that store the values of the sensitive input fields.

17

APK

Layout

Analysis

Layout

Parsing

UI

Rendering

UI

Sensitiveness

Analysis

Privacy

Analysis

Disclosure

Keywords

…

Variable

Binding

SUPOR

Vulnerability

Figure 2.5.: Overview of SUPOR.

With variable binding, existing research efforts in studying the privacy related topics on

predefined well-known sensitive data sources can be applied to sensitive user inputs. For

example, one can use taint analysis to detect disclosures of sensitive user inputs or other

privacy analysis to analyze vulnerabilities of sensitive user inputs in the apps. Next we

describe each component in detail.

2.3.3 Layout Analysis

The goal of the layout analysis component is to render the UIs of an Android app, and

extract the information of input fields: types, hints, and absolute coordinates, which are

later used for the UI sensitiveness analysis.

As we discussed in Section 2.2.3, if we cannot determine the sensitiveness of an input

field based on its type and hint, we need to find a text label that describes the purpose of

the input field. From the user’s perspective, the text label that describes the purpose of

an input field must be physically close to the input field in the screen; otherwise the user

may correlate the text label with other input fields and provide inappropriate inputs. Based

on this insight, the layout analysis component renders the UIs as if the UIs are rendered

in production runs, mimicking how users look at the UIs. Based on the rendered UIs, the

distances between text labels and input fields are computed, and these distances are used

18

later to find the best descriptive text labels for each input field. We next describe the two

major steps of the layout analysis component.

The first step is to identify which layout files contain input fields by parsing the layout

files in the APK of an Android app. In this work, we focus on input fields of the type

EditText and all possible sub-types, including custom widgets in the apps. Each input

field represents a potential sensitive source. However, according to our previous discussion,

the sensitiveness cannot be easily determined by analyzing only the layout files. Thus, all

the files containing input fields are used in the second step for UI rendering.

The second step is to obtain the coordinate information of the input fields by render-

ing the layout files. Using the rapid UI development kit provided by Android, the layout

analysis component can effectively render standard UI widgets. For custom widgets that

require more complex rendering, the layout analysis component renders them by providing

the closest library superclass to obtain the best result. After rendering a layout file, the

layout analysis component obtains a UI model, which is a tree-structure model where the

nodes are UI widgets and the edges describe the parent-child relationship between UI wid-

gets. Figure 2.6 shows the UI model obtained by rendering the layout file in Figure 2.2. For

each rendered UI widget, the coordinates are relative to its parent container widget. Such

relative coordinates cannot be directly used for measuring the distances between two UI

widgets, and thus SUPOR converts the relative coordinates to absolute coordinates with

regards to the screen size.

Coordinate Conversion. SUPOR computes the absolute coordinates of each UI wid-

get level by level, starting with the root container widget. For example, in Figure 2.6,

the root container widget is a LinearLayout, and its coordinates are (0, 50, 480, 752),

representing the left, top, right, and bottom corners. There is no need to convert the co-

ordinates of the root UI widget, since its coordinates are relative to the top left corner

of the screen, and thus are already absolute coordinates. For other UI widgets, SUPOR

computes their absolute coordinates based on their relative coordinates and their parent

container’s absolute coordinates. For example, the relative coordinates of the second UI

widget, TextView, are (16, 16, 60, 33). Since it is a child widget of the root UI widget,

19

LinearLayout @ [0, 50, 480, 752]

TextView @ [16, 16, 60, 33], TEXT=“User ID”

Button @ [16, 146, 464, 163]

ID=0x7f090002, TEXT=“Login”

EditText @ [16, 33, 464, 81], ID=0x7f090000

TextView @ [16, 81, 79, 98], TEXT=“Password”

EditText @ [16, 98, 464, 146], ID=0x7f090001

Figure 2.6.: UI model for Figure 2.1 on 480x800 screen. Only the ID, relative coordinates
and text of the widgets are presented here.

its absolute coordinates is computed as (16, 66, 60, 83). This process is repeated until the

coordinates of every UI widget are converted.

In addition to coordinate conversion, SUPOR collects other information of the UI wid-

gets, such as the texts in the text labels and the attributes for input fields (e.g., ID and

inputType).

2.3.4 UI Sensitiveness Analysis

Based on the information collected from the layout analysis, the UI sensitiveness anal-

ysis component determines whether a given input field contains sensitive information. This

component consists of three major steps.

First, if the input field has been assigned with certain attributes like android:input-

Type="textPassword", it is directly considered as sensitive. With such attribute, the

original inputs on the UI are concealed after users type them. In most cases these inputs

are passwords.

20

Algorithm 1 UI Widget Sensitiveness Analysis

Require: I as an input field, S as a set of text labels, KW as a pre-defined sensitive keyword

dataset

Ensure: R as whether I is sensitive

1: Divide the UI plane into nine partitions based on I’s boundary

2: for all L ∈ S do

3: score = 0

4: for all (x,y) ∈ L do

5: score += distance(I,x,y)∗ posWeight(I,x,y)

6: end for

7: L.score = score / L.numO f Pixels

8: end for

9: T = min(S)

10: R = T.text matches KW

Second, if the input field contains any hint (i.e., tooltip), e.g., “Enter Password Here”,

the words in the hint are checked: if it contains any keyword in our sensitive keyword

dataset, the input field is considered sensitive; otherwise, the third step is required to deter-

mine its sensitiveness.

Third, SUPOR identifies the text label that describes the purpose of the input field, and

analyzes the text in the label to determine the sensitiveness. In order to identify text labels

that are close to a given input field, we provide an algorithm to compute correlation scores

for each pair of a text label and an input field based on their distances and relative positions.

The details of our algorithm is shown in Algorithm 1. At first, SUPOR divides the

UI plane into nine partitions based on the boundaries of the input field. Figure 2.7 shows

the nine partitions divided by an input field. Each text label can be placed in one or more

partitions, and the input field itself is placed in the central partition. For a text label, we

determine how it is correlated to an input field by computing how each pixel in a text

label is correlated to the input field (Line 4). The correlation score for a pixel consists of

21

Input Field (Central) [6]

top [2]left top [4] right top [8]

left bottom [8] right bottom [10]

left [0.8] right [9]

bottom [9]

Figure 2.7.: The partition of the UI is based on the boundary of the input field.

two parts (Line 5). The first part is the Euclidean distance from the pixel to the input field,

computed using the absolute coordinates. The second part is a weight based on their relative

positions, i.e., which of the nine partitions the widget is in. We build the position-based

weight function based on our empirical observations: if the layout of the apps is top-down

and left-right arranged, the text label that describes the input field is usually placed at left or

on top of the input field while the left one is more likely to be the one if it exists. We assign

smallest weight to the pixels in the left partition and second smallest for the top partition.

The right-bottom partition is least possible so we give the largest weight to it. The detailed

weights for each partition is shown in Figure 2.7. Based on the correlation scores of all

the pixels, our algorithm uses the average of the correlation scores as the correlation score

for the pair of the text label and the input field (Line 7). The label with smaller correlation

score is considered more correlated to the input field.

After the correlation scores for all text labels are computed, SUPOR selects the text

label that has the smallest score as the descriptive text label for the input field, and uses

the pre-defined sensitive keyword dataset to determine if the label contains any sensitive

keyword. If yes, the input field is considered as sensitive.

Example. Figure 2.8 shows an example UI that requires Algorithm 1 for sensitiveness

analysis. This example shows a UI that requests a user to enter personal information.

This UI contains two input fields and two text labels. Neither can SUPOR determine

the sensitiveness through their attributes, nor can SUPOR use any hint to determine the

sensitiveness. SUPOR then applies Algorithm 1 on these two input fields to compute the

correlation scores for each pair of text labels and input fields. The correlation scores are

22

Figure 2.8.: Example for UI widget sensitiveness analysis.

Table 2.2.: Scores of the text labels in Figure 2.8.

First Name Last Name

1st input field 46.80 218.81

2nd input field 211.29 46.84

shown in Table 2.2. According to the correlation scores, SUPOR associates “First Name”

to the first input field and “Last Name” to the second input field. Since our keyword dataset

contains keywords “first name” and “last name” for personal information, SUPOR can

declare the two input fields are sensitive.

Repeating the above steps for every input field in the app, SUPOR obtains a list of

sensitive input fields. It assigns an contextual ID to each sensitive input field in the form of

<Layout_ID, Widget_ID>, where Layout_ID is the ID of the layout that contains

the input field and Widget_ID is the ID of the input field (i.e., the value of the attribute

“android:id”).

23

2.3.5 Variable Binding

With the sensitive input fields identified in the previous step, the variable binding com-

ponent performs context-sensitive analysis to bind the input fields to the variables in the

code. The sensitive input fields are identified using contextual IDs, which include layout

IDs and widget IDs. These contextual IDs can be used to directly locate input fields from

the XML layout files. To find out the variables that store the values of the input fields, SU-

POR leverages the binding mechanism provided by Android to load the UI layout and bind

the UI widgets with the code. Such a binding mechanism enables SUPOR to associate

input fields with the proper variables. We refer to these variables the widget variables that

are bound to the input fields.

The variable binding component identifies the instances of the input fields in a context-

insensitive fashion via searching the code using the APIs provided by the rapid UI devel-

opment kit of Android. As shown in Section 2.2.2, findViewById(ID) is an API that

loads a UI widget to the code. Its argument ID is the numeric ID that specifies which wid-

get defined in the XML to load. Thus, to identify the instances of the input fields, SUPOR

searches the code for such method calls, and compare their arguments to the widget IDs

of the sensitive input fields. If the arguments match any widget ID of the sensitive input

fields, the return values of the corresponding findViewById(ID) are considered as the

widget variables for the sensitive input fields.

One problem here is that developers may assign the same widget ID to UI widgets in

different layout files, and thus different UI widgets are associated with the same numeric

ID in the code. Our preliminary analysis on 5000 apps discovers that about 22% of the

identified sensitive input fields have duplicate IDs within the corresponding apps. Since

the context-insensitive analysis cannot distinguish the duplicate widget IDs between layout

files inside an app, a lot of false positives will be presented.

To reduce false positives, SUPOR adds context-sensitivity into the analysis, associ-

ating widget variables with their corresponding layouts. Similar to loading a widget, the

rapid UI development kit provides APIs to load a UI layout into the code. For example,

24

setContentView(ID) with a numeric ID as the argument is used to load a UI layout

to the code, as shown at Line 6 in Figure 2.3. Any subsequent findViewById with the

ID WID as the argument returns the UI widget identified by WID in the newly loaded UI

layout, not the UI widget identified by WID in the previous UI layout. Thus, to find out

which layout is associated with a given widget variable, SUPOR traces back to identify

the closest method call that loads a UI layout1 along the program paths that lead to the in-

vocation of findViewById. We next describe how SUPOR performs context-sensitive

analysis to distinguish widget IDs between layout files. For the description below, we use

setContentView() as an example API.

Given a widget variable, SUPOR first identifies the method call findViewById,

and computes an inter-procedural backward slice [21–24] of its receiver object, i.e., the

activity object. This backward slice traces back from findViewById, and includes all

statements that may affect the state of the activity object. SUPOR then searches the slice

backward for the method call setContentView, and uses the argument of the first found

setContentView as the layout ID. For example, in Figure 2.3, the widget variable tx-

tUid is defined by the findViewById at Line 7, and the activity object of this method

call is an instance of LoginActivity. From the backward slice of the activity ob-

ject, the first method call setContentView is found at Line 6, and thus its argument

R.layout.login_activity is associated with txtUid, whose widget ID is speci-

fied by R.id.uid. Both R.layout.login_activity and R.id.uid can be fur-

ther resolved to identify their numeric IDs, and match with the contextual IDs of sensitive

input fields to determine whether txtUid is a widget variable for a sensitive input field.

2.3.6 Keyword Dataset Construction

To collect the sensitive keyword dataset, we crawl all texts in the resource files from

54,371 apps, including layout files and string resource files. We split the collected texts

based on newline character (\n) to form a list of texts, and extract words from the texts to

1SUPOR considers both Activity.setContentView() and LayoutInflater.inflate() as
the methods to load UI layouts due to their prevalence.

25

form a list of words. Both of these lists are then sorted based on the frequencies of text

lines and words, respectively. We then systematically inspect these two lists with the help

of the adapted NLP techniques. Next we describe how we identify sensitive keywords in

detail.

First, we adapt NLP techniques to extract nouns and noun phrases from the top 5,000

frequent text lines. Our technique first uses Stanford parser [12] to parse each text line

into a syntactic tree as discussed in Section 2.2.4, and then traverses the parse tree level by

level to identify nouns and noun phrases. For the text lines that do not contain any noun or

noun phrase, our technique filters out these text lines, since such text lines usually consist

of only prepositions (e.g., to), verbs (e.g., update please), or unrecognized symbols. From

the top 5,000 frequent text lines, our technique extracts 4,795 nouns and noun phrases.

For the list of words, our technique filters out words that are not nouns due to the similar

reasons. From the top 5,000 frequent words, our technique obtains 3,624 words. We then

manually inspect these two sets of frequent nouns and noun phrases to identify sensitive

keywords. As phrases other than noun phrases may indicate sensitive information, we

further extract consecutive phrases consisting of two and three words from the text lists

and manually inspect the top 200 frequent two-word and three-word phrases to expand our

sensitive keyword set.

Second, we expand the keyword set by searching the list of text lines and the list of

words using the identified words. For example, we further find “cvv code” for credit card

by searching the lists using the top-ranked word “code”, and find “national ID” by searching

the lists using the top-ranked word “id”. We also expand the keywords using synonyms of

the keywords based on WordNet [13, 14, 25].

Third, we further expand the keywords by using Google Translate to translate the key-

words from English into other languages. Currently we support Chinese and Korean be-

sides English.

These keywords are manually classified into 10 categories, and part of the keyword

dataset is presented in Table 2.3. Note that we do not use “Address” for the category

“Personal Info”. Although personal address is sensitive information, our preliminary results

26

Table 2.3.: Part of keyword dataset.

Category Keywords

Credential pin code, pin number, password

Health weight, height, blood type, calories

Identity username, user ID, nickname

Credit Card credit card number, cvv code

SSN social security number, national ID

Personal Info first name, last name, gender, birthday

Financial Info deposit amount, income, payment

Contact phone number, e-mail, email, gmail

Account log in, sign in, register

Protection security answer, identification code

show that this keyword also matches URL address bars in browsers, causing many false

positives. Also, we do not find interesting privacy disclosures based on this keyword in our

preliminary results, and thus “Address” is not used in our keyword dataset. Although this

keyword dataset is not a complete dataset that covers every sensitive keyword appearing in

Android apps, our evaluation results (in Section 2.5) show that it is a relatively complete

dataset for the ten categories that we focus on in this work.

2.4 Implementation

In this section, we provide the details of our implementation of SUPOR, including

the frameworks and tools we built upon and certain tradeoffs we make to improve the

effectiveness.

SUPOR accepts APK files as inputs, and uses a tool built on top of Apktool [26] to

extract resource files and bytecode from the APK file. The Dalvik bytecode is translated

27

into an intermediate representation (IR), which is based on dexlib in Baksmali [27]. The

IR is further converted to WALA [28] static single assignment format (SSA). WALA [28]

works as the underlying analysis engine of SUPOR, providing various functionalities, e.g.,

call graph building, dependency graph building, and point-to analysis.

The UI rendering engine is built on the UI rendering engine from the ADT Eclipse

plug-ins Besides improving the engine to better render custom widgets, we also make the

rendering more resilient using all available themes. Due to SDK version compatibility,

not every layout can be rendered in every theme. We try multiple themes until we find

a successful rendering. Although different themes might make UI slightly different, the

effectiveness of our algorithm should not be affected. The reason is that apps should not

confuse users in the successfully rendered themes, and thus our algorithm designed to

mimic what users see the UIs should work accordingly.

To demonstrate the usefulness of SUPOR, we implement a privacy disclosure detection

system by combining SUPOR with static taint analysis. This system enables us to conduct

a study on the disclosures of sensitive user inputs. We build a taint analysis engine on top

of Dalysis [3] and make several customizations to improve the effectiveness.

The taint analysis engine constraints the taint propagation to only variables and method-

call returns of String type. Therefore, method calls that return primitive types (e.g.,int)

are ignored. There are two major reasons for making this tradeoff. The first is that the

sensitive information categories we focus on are passwords, user names, emails, and so

on, and these are usually not numeric values. The second is that empirically we found a

quite number of false positives related to flows of primitive types due to the incompleteness

of API models for the Android framework. This observation-based refinement suppresses

many false positives. For example, one false warning we observed is that the length of

a tainted string (tainted.length()) is logged, and tracking such length causes too

many false positives afterwards. Since such flow does not disclose significant information

of the user inputs, removing the tracking of such primitive values reduces the sources to

track and improves the precision of the tracking.

28

To further suppress false warnings, we model data structures of key-value pairs, such

as Bundle and BasicNameValuePair. Bundle is widely used for storing an ac-

tivity’s previously frozen state, and BasicNameValuePair is usually used to encode

name-value pairs for HTTP URL parameters or other web transmission parameters, such

as JSON. For each detected disclosure flow, we record the keys when the analysis finds

method calls that insert values into the data structures, e.g.,bundle.put("key1", tai-

nted). For any subsequent method call that retrieves values from the data structures,

e.g.,bundle.get("key2"), we compare the key for retrieving values key2 with the

recorded keys. If no matches are found, we filter out the disclosure flow.

To identify sensitive user inputs, SUPOR includes totally 11 source categories, includ-

ing the 10 categories listed in Section 2.3.6 and an additional category PwdLike for the

input fields identified as sensitive using their attributes such as inputType. The PwdLike

category is prioritized if it has some overlapping with the other categories. Once the wid-

get variables of the sensitive input fields are found, we consider any subsequent method

calls on the variables that retrieve values from the input fields as source locations, such as

getText(). To identify privacy disclosures of the sensitive user inputs, SUPOR mainly

focuses on the information flows that transfer the sensitive data to the following two types

of sinks: (1) the sinks of output channels that send the information out from the phone

(e.g., SMS and Network) and (2) the sinks of public places on the phone (e.g., logging and

content provider writes).

In details, the sink dataset includes five categories of sink APIs, among which two cate-

gories are SMS send (e.g.,SmsManager.sendTextMessage()) and Network (e.g.,Ht-

tpClient.execute()). The other three are related to local storage: logging (e.g.,Log-

.d()), content provider writes (e.g.,ContentResolver.insert()), and local file

writes (e.g.,OutputStream.write()). Totally there are 236 APIs.

Our implementation, excluding the underlying libraries and the core taint analysis en-

gine, accounts for about 4K source lines of code (SLoC) in Java.

29

2.5 Evaluations and Experiments

We conducted comprehensive evaluations on SUPOR over a large number of apps

downloaded from the official Google Play store. We first evaluated the performance of

SUPOR and demonstrated its scalability. We then measured the accuracy of the UI sen-

sitiveness analysis and the accuracy of SUPOR in detecting disclosures of sensitive user

inputs. In addition, our case studies on selected apps present practical insights of sensitive

user input disclosures, which are expected to contribute to a community awareness.

2.5.1 Evaluation Setup

The evaluations of SUPOR were conducted on a cluster of eight servers with an Intel

Xeon CPU E5-1650 and 64/128GB of RAM. During the evaluations, we launched con-

current SUPOR instances on 64-bit JVM with a maximum heap space of 16GB. On each

server 3 apps were concurrently analyzed, so the cluster handled 24 apps in parallel.

In our evaluations, we used the apps collected from the official Google Play store in

June 2013. We applied SUPOR to analyze 6,000 apps ranked by top downloads, with 200

apps for each category. Based on the results of the 6,000 apps, we further applied SUPOR

on another 10,000 apps in 20 selected categories. Each of the 20 categories is found to have

at least two apps with sensitive user input disclosures.

For each app, if it contains at least one input field in layout files, the app is analyzed

by the UI sensitiveness analysis. If SUPOR identifies any sensitive input field of the app,

the app is further analyzed by the taint analysis to detect sensitive user input disclosures.

Table 2.4 shows the statistics of these apps. A small portion of the apps do not contain

any layout files and about 1/3 of the apps do not have any input field in layout files. This

is reasonable because many Game apps do not require users to enter information. 35% of

the apps without layout files and 17% of the apps without input fields belong to different

sub-categories of games. 11 apps (0.07%) cannot be analyzed by SUPOR due to various

parsing errors in rendering their layout files. In total, 60.33% of the apps contain input

30

Table 2.4.: Statistics of 16,000 apps.

#Apps Percentage

Without Layout Files 625 3.91%

Without Input Fields 5,711 35.69%

Without Sensitive Input Fields 4,731 29.57%

With Sensitive Input Fields 4,922 30.76%

Parsing Errors 11 0.07%

TOTAL 16,000 100.00%

fields in their layout files, among which more than half of the apps are further analyzed

because sensitive input fields are found via the UI sensitiveness analysis.

As not every layout containing input fields is identified with sensitive input fields, we

show the statistics of the layouts for the 4,922 apps identified with sensitive input fields.

Among these apps, 47,885 layouts contain input fields and thus these layouts are rendered.

Among the rendered layouts, 19,265 (40.2%) are found to contain sensitive keywords (no

matter whether the keywords are associated with any input field). This is the upper bound

of the number of layouts that can be identified with sensitive input fields. In fact, 17,332

(90.0%) of the 19,265 layouts with sensitive keywords are identified with sensitive input

fields.

2.5.2 Performance Evaluation

The whole experiment for 16,000 apps takes 1439.8 minutes, making a throughput of

11.1 apps per minutes on the eight-server cluster. The following analysis is only for the

4,922 apps identified with sensitive input fields, if not specified.

The UI analysis in SUPOR includes decompiling APK files, rendering layouts, and

performing UI sensitiveness analysis. For each app with sensitive input fields, SUPOR

31

needs to perform the UI analysis for at least 1 layout and at most 190 layouts, while the

median number is 7 and the average number is 9.7. Though the largest execution time

required for this analysis is about 2 minutes. 96.3% of the apps require less than 10 seconds

to render all layouts in an app. The median analysis time is 5.2 seconds and the average

time is 5.7 seconds for one app. Compared with the other parts of SUPOR, the UI analysis

is quite efficient, accounting for only 2.5% of the total analysis time on average. Also,

the UI sensitiveness analysis, including the correlation score computation and keyword

matching, accounts for less than 1% of the total UI analysis time, while decompiling APK

files and rendering layouts take most of the time.

To detect sensitive user input disclosures, our evaluation sets a maximum analysis time

of 20 minutes. 18.1% of the apps time out in our experiments but 73.7% require less than

10 minutes. The apps with many entry points tend to get stuck in taint analysis, and are

more likely to timeout. Scalability of static taint analysis is a hard problem, but we are

not worse than related work. The timeout mechanism is enforced for the whole analysis,

but the system will wait for I/O to get partial results. In practice, we can allow a larger

maximum analysis time so that more apps can be analyzed. Among the apps finished in

time, the median analysis time is 1.9 minutes and the average analysis time is 3.7 minutes.

The performance results show that SUPOR is a scalable solution that can statically

analyze UIs of a massive number of apps and detect sensitive user input disclosures on

these apps. Compared with existing static taint analysis techniques, the static UI analysis

introduced in this work is highly efficient, and its performance overhead is negligible.

2.5.3 Effectiveness of UI Sensitiveness Analysis

To evaluate the accuracy of the UI sensitiveness analysis, we randomly select 40 apps

and manually inspect the UIs of these 40 apps to measure the accuracy of the UI sensitive-

ness analysis.

First, we randomly select 20 apps reported without sensitive input fields, and manually

inspect these apps to measure the false negatives of SUPOR. In these apps, the largest

32

number of layouts SUPOR renders is 5 and the total number of layouts containing input

fields is 39 (1.95 layouts per app). SUPOR successfully renders 38 layouts and identifies

57 input fields (2.85 input fields per app). SUPOR fails to render 1 layout due to the

lack of necessary themes for a third-party library. By analyzing these 57 input fields, we

confirm that SUPOR has only one false negative (FN), i.e., failing to mark one input field

as sensitive in the app com.strlabs.appdietas. This input field requests users to enter their

weights, belonging to the Health category in our keyword dataset. However, the text of

the descriptive text label for the input field is “Peso de hoy”, which is “Today Weight” in

Spanish. Since our keyword dataset focuses on sensitive keywords in English, SUPOR has

a false negative. Such false negatives can be reduced by expanding our keyword dataset to

support more languages.

Second, we randomly select 20 apps reported with sensitive input fields. Table 2.5

shows the detailed analysis results. Column “#Layouts ” counts the number of layouts

containing input fields in each app, while Column “#Layouts with SIF” presents the num-

ber of layouts reported with sensitive input fields. Column “#Input Fields” lists the total

number of input fields in each app and Column “#Reported SIF” gives the detailed infor-

mation about how many input fields are identified by checking the inputType attribute,

by matching the hint text, and by analyzing the associated text labels. Sub-Column “To-

tal” presents the total number of sensitive input fields identified by SUPOR in each app.

Columns “FP” and “FN” show the number of false positives and the number of false neg-

atives produced by SUPOR in classifying input fields. Column “Dup ID” shows if an app

contains any duplicate widget ID for sensitive input fields. These duplicate IDs belong

to either sensitive input fields (represented by ◦) or non-sensitive input fields (•). For all

the layouts in these 20 apps, SUPOR successfully renders the layouts except for App 18,

which has 29 layouts containing input fields but SUPOR renders only 17 layouts. The

reason is that Apktool fails to decompile the app completely.

The results show that for these 20 apps, SUPOR identifies 149 sensitive input fields

with 4 FPs and 3 FNs, and thus the achieved true positives (TP) is 145. Combined with

the 20 apps identified without sensitive input fields (0 FP and 1 FN), SUPOR achieves an

33

Table 2.5.: UI analysis details for 20 randomly chosen apps.

App #Layouts #Input #Layouts #Reported SIF FP FN Dup

ID Fields with SIF Password Hint Label Total ID

1 8 18 4 6 0 3 9 2 ◦

2 37 77 2 0 0 8 8

3 3 3 1 0 1 0 1

4 4 9 3 0 0 6 6 ◦

5 5 7 1 1 0 0 1

6 17 52 10 6 12 12 30 1 ◦

7 4 5 2 0 0 3 3

8 15 22 9 8 3 2 13 1

9 3 7 1 1 1 0 2

10 7 16 1 0 0 1 1

11 5 6 1 1 1 0 2

12 17 33 8 8 9 0 17 ◦ •

13 26 60 10 0 0 12 12 ◦ •

14 2 8 2 1 0 4 5 2 1

15 14 26 5 2 3 0 5 ◦ •

16 4 7 1 1 0 0 1

17 4 8 3 2 3 0 5 •

18 29 25 4 4 0 6 10 ◦

19 24 37 8 9 6 1 16 ◦

20 1 2 1 0 2 0 2

Total 229 428 77 50 41 58 149 4 3

34

average precision of 97.3% (precision = T P
T P+FP

= 145/149) and an average recall of 97.3%

(recall = T P
T P+FN

= 145/(145+(1+3)).

We next describe the reasons for the FNs and the FPs. SUPOR has two false negatives

in App 1, in which the text label “Answer” is not identified as a sensitive keyword. But ac-

cording to the context, it means “security answer”, which should be sensitive. Although this

phrase is modeled as a sensitive phrase in our keyword dataset, SUPOR cannot easily asso-

ciate “Answer” with the phrase, resulting in a false negative. In App 8, SUPOR marks an

input field as sensitive because the associated text label containing the keyword “Height”.

However, based on the context, the app actually asks the user to enter the expected page

height of a PDF file. Such issues can be alleviated by employing context-sensitive NLP

analysis [29].

SUPOR also has two FPs in App 6 and App 8 due to the inaccuracy of text label

association. In App 6 shown in Figure 2.9, the hint of the “Delivery Instructions” input

field does not contain sensitive keywords, and thus SUPOR identifies the close text label

for determining its sensitiveness. However, SUPOR incorrectly associates a description

label of “Email” to the “Delivery Instructions” input field based on their close distances.

Since this description contains sensitive keywords such as email, SUPOR considers the

“Delivery Instructions” input field as sensitive, causing a false positive. Finally, SUPOR

has both FPs and FNs for App 14, since its arrangements of input fields and their text labels

are not accurately captured by our position-based weights that give preferences for left and

top positioned text labels.

To evaluate the effectiveness of resolving duplicate IDs, We instrumented SUPOR to

output detailed information when identifying the widget variables. We did not find any case

where SUPOR incorrectly associates the widget variables with the input fields based on

the contextual IDs, but potentially SUPOR may have inaccurate results due to infeasible

sequences of entry points that can be executed. We next present an example to show how

backward slicing help SUPOR distinguish duplicate widget IDs. App 17 has two layouts

with the same hierarchy. Layout A contains a sensitive input field with the ID w1 while

Layout B contains a non-sensitive input field with the same ID w1. Both layouts are loaded

35

Figure 2.9.: False positive example in UI sensitiveness analysis.

via LayoutInflater.inflate and then findViewById is invoked separately to

obtain the enclosed input fields. Without the backward slicing, SUPOR considers the

input field with the ID w1 in the Layout B as sensitive, which is a false positive. With the

backward slicing, SUPOR can distinguish the input field with the ID w1 in Layout B with

the input field with the ID w1 in Layout A, and correctly filter out the non-sensitive input

field in Layout B.

2.5.4 Accuracy of Detecting Sensitive User Input Disclosures

In our experiments, 355 apps are reported with sensitive user input disclosures. The

reported apps belong to 25 out of the 30 categories in Google Play Store and 20 categories

have at least 2 apps reported. We next report the accuracy of detecting sensitive user input

disclosures.

Figure 2.10 shows the number of true positives and the number of false positives by

taint source and sink categories. If an app is reported with multiple disclosure flows and

one of them is a false positive, the app is considered as a false positive. Through manually

evaluating the 104 apps reported cases from the first 6,000 analyzed apps, we find false

positives in 9 apps. Therefore, the overall false positive rate is about 8.7%, i.e., the accuracy

of privacy disclosure detection is 91.3%. We investigated the false positives and found

that these false positives were mostly resulted from the limitations of the underlying taint

analysis framework, such as the lack of accurate modeling of arrays.

36

0/1 0/2 0/4 0/5
1/8 2/9 1/11

3/42

3/54

0

10

20

30

40

50

60

False Positives

True Positives

(a) TPs and FPs by source categories.

0/2 1/4

5/44

5/54

0

20

40

60

SMS Send Content Provider

Write

Network Logging

False Positives

True Positives

(b) TPs and FPs by sink categories.

Figure 2.10.: True positives and false positives by source/sink categories for the reported
apps.

37

Figure 2.11.: Case study: National ID and password disclosure example without protection.

2.5.5 Case Studies

To improve the community’s awareness and understanding of sensitive user input dis-

closures, we conducted cases studies on four selected apps from the source categories SSN,

PwdLike, Credit Card, and Health. These case studies present interesting facts of sensitive

user input disclosures, and also demonstrate the usefulness of SUPOR. We also inform the

developers of the apps mentioned in this section about the detected disclosures.

com.yes123.mobile is an app for job hunting. The users are required to register with

their national ID and a password to use the service. When the users input the ID and

password, and then click log in (see Figure 2.11), the app sends both their national IDs

and passwords via Internet without any protection (e.g., hashing or through HTTPS chan-

nel). Since national ID is quite sensitive (similar as Social Security Number), such limited

protection in transmission may lead to serious privacy disclosure problems.

The second example app (craigs.pro.plus) shows a legitimate disclosure where HTTPS

connections are used to send user sensitive inputs to its server for authentication. Even

though the password itself is not encoded (e.g., hashing), we believe HTTPS connections

provide a better protection layer to resist the disclosures during communications. Also we

38

Figure 2.12.: Case study: Credit card information disclosure example.

find that popular apps developed by enterprise companies are more likely to adopt HTTPS,

providing better protection for their users.

To better understand whether sensitive user inputs are properly protected, we further

inspect 104 apps, of which 44 apps send sensitive user inputs via network. Among these

44 apps, only 10 of them adopt HTTPS connections, while the majority of apps transmit

sensitive user inputs in plain text via HTTP connections. Such study results indicate that

most developers are still unaware of the risks posed by sensitive user input disclosures, and

more efforts should be devoted to provide more protections on sensitive user inputs.

Our third example app (com.nitrogen.android) discloses credit card information, a crit-

ical financial information provided by the users. Figure 2.12 shows the rendered UI of the

app. The three input fields record credit card number, credit card security number, and the

card holder’s name. Because these fields are not decorated with textPassword input

type and they do not contain any hints, SUPOR uses the UI sensitiveness analysis to com-

pute correlation scores for each text label. As we can see from the UI, the text label “Credit

39

Figure 2.13.: Case study: Health information disclosure.

Card Number” and the text label “Credit Card Security Number” are equally close to the

first input field. As our algorithm considers weights based on the relative positions between

text labels and input fields, SUPOR correctly associates the corresponding text labels for

these three input fields, and the taint analysis identifies sensitive user input disclosures for

all these three input fields to logging.

Our last example shows that SUPOR also identifies apps that disclose personal health

information to logging. Figure 2.13 shows the rendered UI of the layout dpacacl in app

com.canofsleep.wwdiary, which belongs to the category HEALTH && FITNESS. This

app discloses personal health information through the user inputs collected from the UI. As

we can see, even though all input fields on the UI hold hint texts, these texts do not contain

any sensitive keywords. Therefore, SUPOR still needs to identify the best descriptive text

label for each input field. Based on the UI sensitiveness analysis, SUPOR successfully

marks the first three input fields as sensitive, i.e., the input fields that accept weight, height

and age. But based on the taint analysis, only the first two input fields are detected with

disclosure flows to logging. Similar to financial information, such health information about

users’ wellness is also very sensitive to the users.

40

Although Google tries to get rid of some of the known sinks that contribute most of the

public leaks by releasing new Android versions, many people globally may still continue

using older Android releases for a very long time (about 14.2% of Android phones globally

using versions older than Jelly Bean [30]). If malware accesses the logs on these devices,

all the credit card information can be exploited to malicious adversaries. Thus, certain level

of protection is necessary for older versions of apps. Also, SUPOR finds that some apps

actually sanitize the sensitive user inputs (e.g., hashing) before these inputs are disclosed

in public places on the phone, indicating that a portion of developers do pay attention to

protecting sensitive user input disclosures on the phone.

2.6 Discussion

SUPOR is designed as an effective and scalable solution to screening a large number

of apps for sensitive user inputs. In this work, we have demonstrated that SUPOR can

be combined with static taint analysis to automatically detect potential sensitive user input

disclosures. Such analysis can be directly employed by app markets to raise warnings, or

by developers to verify whether their apps accidentally disclose sensitive user inputs. Also,

SUPOR can be paired with dynamic taint analysis to alert users before the sensitive user

inputs escape from the phones.

SUPOR focuses on input fields, a major type of UI widgets to collect user inputs. Such

UI widgets record what user type and contain high entropy, unlike yes/no buttons which

contain low entropy. It is quite straightforward to extend our current approach to handle

more diverse widgets.

SUPOR chooses the light-weight keyword-based technique to determine the sensitive-

ness of input fields since the texts contained in the associated text labels are usually short

and straightforward to understand. Our evaluations show that in general these keywords are

highly effective in determining the sensitiveness of input fields. Certain keywords may pro-

duce false positives since these keywords have different meanings under different contexts.

41

To alleviate such issues, we may leverage more advanced NLP techniques that consider

contexts [29].

2.7 Related Work

Many great research works [1–4, 6, 9, 31–36] focus on privacy leakage problems on

predefined sensitive data sources on the phone. SUPOR identifies sensitive user inputs,

and may enable most of the existing research on privacy studies to be applied to sensitive

user inputs. As a result, our research compliments the existing works. FlowDroid [35,

36] also employs a limited form of sensitive input fields—password fields. Compared

with FlowDroid, we leverage static UI rendering and NLP techniques to identify different

categories of sensitive input fields in an extensible manner. Susi [37] employs a machine

learning approach to detect pre-defined source/sinks from Android Framework. In contrast,

SUPOR focus on a totally different type of sensitive sources–user inputs through GUI.

Moreover, a few approaches are designed for controlling the known privacy leaks.

AppFence [38] employs fake data or network blocking to protect privacy leaks to Inter-

net with user supplied policies. Nadkarni et al. provide new OS mechanisms for proper

information sharing cross apps [39].

NLP techniques have been used to study app descriptions [7, 8, 15]. WHYPER [7] and

AutoCog [8] leverages NLP techniques to understand whether the application descriptions

reflect the permission usage. CHABADA [15] also applies topic modelling, an NLP tech-

nique to detecting malicious behaviors of Android apps. It generates clusters according

to the topic, which consists of a cluster of words that frequently occur together. Then, it

tries to detect the outliers as malicious behaviors. CHABADA does not focus on detecting

privacy leaks. On the other hand, SUPOR leverages NLP techniques to identify sensi-

tive keywords and further use those keywords to classify the descriptive text labels and the

associated input fields.

Furthermore, there are a few important related works using UI related information to

detect different types of vulnerabilities and attacks. AsDroid [40] checks UI text to detect

42

the contradiction between expected behavior inferred from the UI and the program behavior

represented by APIs. Chen et al. study the GUI spoofing vulnerabilities in IE browser [41].

Mulliner et al. discover GUI element misuse (GEM), a type of GUI related access con-

trol violation vulnerabilities and design GEM Miner to automatically detect GEMs [42].

SUPOR focuses on sensitive user input identification which is different from the problems

studied by these existing works.

The closest related work is UIPicker [43], which also focuses on sensitive user input

identification. UIPicker uses supervised learning to train a classifier based on the features

extracted from the texts and the layout descriptions of the UI elements. It also considers the

texts of the sibling elements in the layout file. Unlike UIPicker that uses sibling elements in

the layout file as the description text for a UI widget, which could easily include unrelated

texts as features, SUPOR selects only the text labels that are physically close to input fields

in the screen, mimicking how users look at the UI, and uses the texts in the text labels to

determine the sensitiveness of the input fields. Also, their techniques in extracting privacy-

related texts could complement our NLP techniques to further improve our keyword dataset

construction.

In the software engineering domain, there are quite a few efforts on GUI reverse en-

gineering [10, 44–47] for GUI testing. GUITAR is a well-known framework for general

GUI testing, and GUI ripper [10], a component of GUITAR targets general desktop ap-

plications, uses dynamic analysis to extract GUI related information and requires human

intervention when the tools cannot fill in proper information in the applications. In [44]

and [46, 47], two different approaches have been proposed to convert the hard-coded GUI

layout to model-based layout (such as XML/HTML layout). GUISurfer leverages source

code to derive the relationships between different given UI widgets. In contract, SUPOR

focuses on mobile apps and in particular Android apps, and leverages the facility from

existing rapid UI development kits to identify and render UI widgets statically.

43

2.8 Summary

In this chapter, we study the possibility of scalably detecting sensitive user inputs, an

important yet mostly neglected sensitive source in mobile apps. We leverage the rapid UI

development kits of modern mobile OSes to detect sensitive input fields and correlate these

input fields to the app code, enabling various privacy analyses on sensitive user inputs. We

design and implement SUPOR, a new static analysis tool that automatically identifies sen-

sitive input fields by analyzing both input field attributes and surrounding descriptive text

labels through static UI parsing and rendering. Leveraging NLP techniques, we build mo-

bile app specific sensitive word vocabularies that can be used to determine the sensitiveness

of given texts. To enable various privacy analyses on sensitive user inputs, we further pro-

pose a context-sensitive approach to associate the input fields with corresponding variables

in the app code.

To demonstrate the usefulness of SUPOR, we build a privacy disclosure discovery sys-

tem by combining SUPOR with static taint analysis to analyze the sensitive information of

the variables that store the user inputs from the identified sensitive input fields. We apply

the system to 16,000 popular Android apps, and SUPOR achieves an average precision

of 97.3% and also an average recall of 97.3% in detecting sensitive user inputs. SUPOR

finds 355 apps with privacy disclosures and the false positive rate is 8.7%. We also demon-

strate interesting real-world cases related to national ID, username/password, credit card

and health information.

44

3 BIDTEXT: DETECTING SENSITIVE DATA DISCLOSURE VIA

BI-DIRECTIONAL TEXT CORRELATION ANALYSIS

Traditional sensitive data disclosure analysis faces two challenges: to identify sensitive data

that is not generated by specific API calls, and to report the potential disclosures when the

disclosed data is recognized as sensitive only after the sink operations. We address these

issues by developing BIDTEXT, a novel static technique to detect sensitive data disclosures.

BIDTEXT formulates the problem as a type system, in which variables are typed with the

text labels that they encounter (e.g., during key-value pair operations). The type system

features a novel bi-directional propagation technique that propagates the variable label sets

through forward and backward data-flow. A data disclosure is reported if a parameter at

a sink point is typed with a sensitive text label. We have already gotten some preliminary

results by evaluating BIDTEXT on some real-world Android apps. So far we have observed

that the false positive rate for BIDTEXT is 10%.

3.1 Introduction

Sensitive data disclosure has been a long-standing challenge for data security. By ac-

cessing the disclosed sensitive information, adversaries can learn about the system and

then conduct attack [48, 49]. A prominent example is the OpenSSL Heartbleed vulnerabil-

ity disclosed in 2014. The OpenSSL versions with such a flaw allow remote attackers to

retrieve sensitive data, for example, user authentication credentials and secret keys [50,51].

Attackers can then compromise the target systems with the disclosed sensitive information.

The proliferation of mobile devices [52, 53] makes the situation even worse since mo-

bile devices process a lot of sensitive user data. Previous studies showed that it is common

that mobile apps undesirably disclose sensitive user information [2, 54–56]. Many tech-

niques have been proposed that work at the system level or the application level, static or

45

dynamic [1, 4, 31, 57]. Haris et al. provide a comprehensive list of the approaches to de-

tecting sensitive information disclosures in mobile computing [58]. All these approaches

require definition of the sensitive data sources, usually certain APIs whose return value is

sensitive. With the definition, if forward data flow is observed between taint sources and

sinks, disclosure defects are reported. Later, researchers realized that some generic APIs

may return sensitive values, depending on the context, although they may return insensitive

values in many cases. SUPOR [59] and UIPicker [43] aimed to identify which user inputs

on the user interfaces can be sensitive. Then the sensitive inputs are associated with the

variables in the code such that static or dynamic forward data flow analysis can be applied

to detect the potential sensitive user inputs disclosures. Sensitive user inputs are identified

in the context of the user interfaces which contain text or graphical information to instruct

what the users should enter.

However, the above solutions still have limitations. Sensitive data may come from

generic API methods not related to UI (e.g., loading data from some file or receiving data

from network). In these cases, most existing approaches would not work properly. We

cannot simply treat the generic APIs as the taint sources as that will lead to a large number

of false warnings. In addition, forward data flow analysis is insufficient. In many cases, a

piece of data may be first emitted through a sink and then later typed as sensitive. There

may not be any forward data flow from the type revelation point to the sink point.

In this section, we develop BIDTEXT, a technique to detect data disclosures by exam-

ining the text labels correlated with variables. The text labels, either from the code (e.g.,

the textual keys in key-value pairs) or the UI, provide rich information about the data con-

tained in the variables. BIDTEXT extracts these labels, and leverages a novel type system

to propagate these labels through both backward and forward data flow. Data disclosures

are reported when a parameter at a sink point is typed with a sensitive textual label. The

bi-directional propagation scheme is unique and different from the traditional unification

based type inference systems. It features the capability of avoiding undesirable unification

of text labels, enabling a low false positive rate. Backward propagation allows BIDTEXT

46

to capture cases in which data sensitiveness is revealed after the data is sent through some

sink.

Our work makes the following contributions:

• We propose BIDTEXT, a novel method to detect sensitive data disclosures. BID-

TEXT leverages constant text labels and features a novel type system that performs

bi-directional text label propagation.

• We implement a prototype of BIDTEXT for Android apps, and evaluate it on some

real-world apps. So far we have observed that the false positive rate for BIDTEXT is

10%.

• BIDTEXT is available at https://bitbucket.org/hjjandy/toydroid.

bidtext.

3.2 Motivating Example

We use a real-world Android app com.buycott.android to motivate our technique. It

is an app that allows users to check the company/vendor of a product by scanning the

product’s barcode. It even allows users to view the family tree of the company/vendor.

Users can then make decision on whether this is a company that rips off its customers so

that they do not want to have business with. Users can also start/join campaigns against

specific companies [60].

Figure 3.1 shows a piece of simplified code snippet from the app. The app sends a

request to the Web server and obtains a list of post messages. The HTTP response is

converted to a string in the app and then sent to a handler via a Message object. The

following operations are present in the code snippet. At line 7, a key-value mapping is

retrieved from the Message object. Then the data string of the message is obtained from

the mapping at line 8. Right after that, the data string is written to the log file at line 9.

Note that writing to a log file is usually considered as a sink for data disclosures [9, 35, 36,

https://bitbucket.org/hjjandy/toydroid.bidtext
https://bitbucket.org/hjjandy/toydroid.bidtext

47

1 class CampaignActivity_20 implements Handler.Callback{

2 CampaignActivity act;

3 CampaignActivity_20(CampaignActivity a){

4 this.act = a;

5 }

6 public boolean handleMessage(Message msg){

7 Bundle b = msg.getData();

8 String dt = b.getString("data");

9 Log.d("CampaignActivity", "Got data back: " + dt);//sink

10 Runnable r = new CampaignActivity_20_1(dt);

11 act.runOnUiThread(r);

12 return false;

13 }

14 }

15 class CampaignActivity_20_1 implements Runnable{

16 String jsonString;

17 CampaignActivity_20_1(String data){

18 jsonString = data;

19 }

20 public void run(){

21 JSONArray jsonArray = new JSONArray(jsonString);

22 int len = jsonArray.length();

23 for (int i=0; i<len; i++) {

24 JSONObject json = jsonArray.getJSONObject(i);

25 String url = json.getString("avatar_url");

26 ImageView iv = ... // omitted

27 displayImage(url, iv); // omitted

28 String un = "" + json.getString("username") + "" +

json.getString("created_at");

29 TextView tv = ... // omitted

30 tv.setText(Html.formHtml(un));

31 String c = json.getString("content");

32 TextView ctv = ... // omitted

33 ctv.setText(Html.fromHtml(c));

34 // ...

35 }

36 }

37 }

Figure 3.1.: Motivating example from app com.buycott.android.

48

dt @8

sink @9 data @17

jsonString@18

jsonArray @21

json @24

json.getString("username")@28

call@9 call@10

assignment@18

new instance@21

call@24

call@28

username

Figure 3.2.: Data flow (solid arrows) and type propagation (dashed arrows) for Figure 3.1.

59] because log files can be accessed by malware1. After the logging operation, the app

instantiates a Runnable object with the data string at line 10, which runs in the UI thread

(line 11) to allow interactions with UI elements.

The data string is transmitted to the Runnable instance via the instantiation at line

10. Inside the constructor at line 17, the data is stored in a field variable jsonString

at line 18. When the UI thread is running, the run() method at line 20 is invoked. The

data string is converted to a JSONArray object at line 21 which is then iterated. Every

element in the array is a JSONObject (line 24). The app then obtains the URL for the

avatar image, the corresponding user Id, the time of creation and the content of the post

message by looking for the values via corresponding keys in the JSON object (lines 25, 28,

and 31). All such information is shown on some UI elements (e.g., line 33).

Now let’s consider the potential sensitive data disclosure in this running example. Based

on the above description, the data falling into the sink at line 9 comes from the Web server.

1The recent version of Android has substantially mitigated this problem by limiting access to log files. But
there are still a large number of devices running old versions of Android. Note that BIDTEXT is general to
support various configurations of sink points.

49

We later know that the data contains some sensitive user account information. In other

words, the app retrieves the sensitive user account information from the server and writes

it to the local log file without any encryption. This is a typical kind of undesirable informa-

tion disclosure [61, 62] that emits sensitive information from server such as user account,

balance in bank account, and employee salary to local files.

Traditional sensitive data disclosure analysis inspects the data flow between some sen-

sitive source point, for example, an API call whose return value can be easily recognized as

sensitive (e.g.,Tele-phonyManager.getDeviceId() in Android), and a sink point

(e.g., a file write or a socket send). If forward data flow can be discovered from the source

point to the sink point, a disclosure problem is reported. In this example, while we do have

data flow from the Web server response to the logging operation but we cannot determine

whether the response contains sensitive data from the operations along the data flow. If we

treat all data from server sensitive, a lot of false alarms will be produced; but if we simply

ignore them, we miss true disclosures as in this example.

Different from the traditional disclosure analysis, our technique relies on the observa-

tion that the sensitiveness of data used in applications can be recognized through examining

the textual information involved in the operations. Such texts are constant strings in either

the code or the user interfaces. We randomly sampled 2,000 Android apps and found that

on average each app contains 76.7 constant strings in layout files (i.e., XML files used to

statically define UIs) and 151 constant strings in app code. These constant strings often

provide rich information about what is being held by the corresponding variables. For ex-

ample, in Figure 3.1, method call json.getString("username") at line 28 uses a

constant string “username”. We can infer that the JSON object contains some sensitive

user Id. Since the JSON object is part of the Web server response, according to the work

flow, we can conclude that the response contains sensitive information. Thus the logging

operation at line 9 should be reported as a sensitive data disclosure.

Note that even if we recognized that the JSON object at line 28 contains sensitive in-

formation, we could not detect the disclosure problem using traditional analysis techniques

that try to find forward data flow from source points to sink points. We show the data flow

50

via solid arrows in Figure 3.2, starting from retrieving the data from the key-value map-

ping (line 8). If we treat line 28 as a source point, we cannot get a forward data flow path

from the source point to the sink point. Thus the disclosure defect is still missed after we

augment traditional techniques with our new sensitive data recognition method.

BIDTEXT solves the problem by introducing bi-directional propagation. Instead of

propagating tags like tainted and untainted in traditional techniques, our approach uses the

constant strings as the tags and propagates both backward and forward. As the dashed ar-

rows in Figure 3.2 show, constant text “username” is propagated backward from the method

call at line 28 to the variable json created at line 24, and so on. Consequently, variables

jsonArray, jsonString, data and finally dt are tagged with the text “username”.

Intuitively, it means all these variables contain sensitive user Id information. Next we for-

wardly propagate the tag from line 8 to the sink point at line 9. Therefore, the logging

statement operates on variables that are associated with text “username”. By applying this

approach to the whole code snippet, we obtain the set of correlated text as {“Campaign-

Activity”, “Got data back:”, “data”, “avatar_url”, “username”, “created_at”, “content”}.

The first two textual tags are associated to the variable directly at the sink point. Tag “data”

is propagated to the variable (at the logging statement) in a forward manner. The remaining

texts are propagated to the sink point via a bi-directional manner discussed above.

BIDTEXT also associates UI texts to variables. UI often contains texts that also indicate

the sensitiveness of data shown on the UI (see [43, 59]). We examine the corresponding

layout file to get the texts, add them to the tag set of the related variables and propagate

them like the texts found in the code. In the example, we can find several code locations

that interact with the UI (e.g., line 33), through which we identify the corresponding layout

files to collect UI texts. However, the content of the UI is dynamically created and none of

the UI elements holds constant texts. Therefore, no GUI texts are propagated to the sink

point in this example.

Next we apply a natural language processing (NLP) technique to the tag set of the

sink point to find out if the texts can tell the sensitiveness of the variable dt. Among the

51

Program p ::= s*

Statement s ::= v := t /*constant string in code*/

| v := i /*UI-related Id*/

| v := c /*values of other types*/

| v := ⊖v1 /*unary assignment*/

| v := v1 ⊕ v2 /*binary assignment*/

| call(m,va →v f) /*va/v f actual/formal arg*/

| v := return(m,vr) /*m returns vr to v*/

| v := apicall(m,va) /*API call to method m*/

| IF(v) {st} ELSE {s f }

| LOOP {s} /*loop structure*/

| v := φ (vt , v f) /*value merging in SSA*/

Variable v

Method m

String t

ID i

Value c /*Non-str, non-Id Values*/

Figure 3.3.: Language.

collected texts, “username” matches a predefined sensitive keyword. Thus our technique

reports a sensitive data disclosure problem for the logging operation at line 9.

3.3 Design

We propose BIDTEXT, a static bi-directional text correlation analysis approach, to de-

tect sensitive data disclosures. BIDTEXT combines both the bi-directional propagation and

the new approach that uses internal constant texts to identify sensitive variables as illus-

trated in Section 3.2.

52

3.3.1 Language Abstraction

To simplify our discussion, we introduce an abstract language. The language is pre-

sented in Figure 3.3. We only model the language features that are related to explaining

the text correlation analysis and the bi-directional propagation. Others are abstracted away

or simplified. As we discussed in Section 3.2, we leverage the constant texts in the code as

well as in the UI to tag variables and determine whether sensitive data is disclosed at sink

points. Therefore, constant strings in the code and constant Ids that are associated with

UI are of special interest and explicitly modeled in the language. For simplicity, we do

not allow constant strings/Ids to appear in complex operations, e.g., binary operations and

method calls. For such scenarios, the constant is first assigned to a variable, which is further

used in the complex operation. This is similar to how Android apps handle constant values

in DEX bytecode. For example, the method call json.getString("username") at

line 28 in Figure 3.1 is converted to two statements:

1 tmp = "username";

2 json.getString(tmp);

An invocation to method m(v f) is modeled by two separate statements: call(m,va

→v f) passing the actual argument va to the formal argument v f and v=return(m,vr)

returning the value in vr in m() to v in the caller. The separation allows us clearly model

the data flow at the entry and the exit of a method call. v := apicall(m, va) abstracts

invocation to an API function m() whose implementation is usually excluded or not avail-

able during analysis, e.g., the runtime C library and the framework methods for Android

apps.

The language also supports conditional branches and loops. There are different loop

structures such as for loops and while loops. We ignore these differences and use a

LOOP statement to model them. Loop conditions are not relevant to our analysis and hence

not modeled. Any side effects (in the loop conditions) are explicitly modeled as assign-

ments in the loop body.

53

Our language is a kind of SSA language so that φ function is used to merge values from

different branches (of a predicate). As we will show later in Section 3.3.2, φ functions

require delicate consideration during bi-directional propagation.

3.3.2 Type System and Bi-directional Propagation

As discussed earlier, we use the constant texts in either the code or the UI to tag the

correlated variables and propagate the tags bi-directionally. We formalize this approach in

a type system, i.e.,the set of tags associated with a variable is treated as the type of the

variable. Since the type is a set, we also call it a type set in this paper. The mappings

from variables to their type sets form the context Γ of the type system, which is iteratively

updated during analysis until a fixed point is reached. For example, at the beginning, Γ is

empty. Upon a statement tmp = "username", Γ is updated to {tmp : {username}}. At

this point, we have Γ ⊢ tmp : {username}, which means under context Γ, variable tmp is

typed with set {username}. In other words, Γ(tmp) = {username}, where Γ(tmp) evaluates

variable tmp in the context to obtain the corresponding type set.

When a statement is evaluated, the context may be updated. We use Γ,S |= Γ ⇒ Γ′ to

indicate that under context Γ, evaluating statement S updates the context from Γ to Γ′.

We use [var : T]Γ to represent an update to the context. Specifically, if no mapping is

found for variable var in context Γ, the mapping is added into the context. But if there

exists some mapping for var, the rule substitutes the existing type set for var with the

given type set T . Multiple mappings can be updated simultaneously, e.g., [var : T , var’ :

T ′]Γ updates the context for two variables var and var’.

Given two type sets T and T ′, T ∪T ′ unions the two sets while T −T ′ returns a new

type set which contains all elements belonging to T but not T ′.

With the language in Figure 3.3 and the above definitions, we define the bi-directional

type set propagation rules in Figure 3.4. The propagation is iterative. That means once the

analysis starts, it does not terminate until the context Γ reaches a fixed point.

54

Const-Binding
Γ,v := t |= Γ ⇒ [v : {t}]Γ

UI-Binding
resource_id(i)

Γ,v := i |= Γ ⇒ [v : extract_text(i)]Γ

Unary-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T ′

Γ,v :=⊖v1 |= Γ ⇒ [v : T ∪T ′,v1 : T ′∪T]Γ

Binary-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T1 Γ ⊢ v2 : T2

Γ,v := v1 ⊕ v2 |= Γ ⇒

v : T ∪T1 ∪T2,

v1 : T1 ∪ (T −T2),

v2 : T2 ∪ (T −T1)

Γ

Phi-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T1 Γ ⊢ v2 : T2

Γ,v := φ(v1,v2) |= Γ ⇒

v : T ∪T1 ∪T2,

v1 : T1 ∪ (T −T2),

v2 : T2 ∪ (T −T1)

Γ

Method-Call-Param
Γ ⊢ va : T Γ ⊢ v f : T ′

Γ,call(m,va → v f) |= Γ ⇒ [v f : T ′∪T,va : T ∪T ′]Γ

Method-Call-Return
Γ ⊢ v : T Γ ⊢ vr : T ′

Γ,v := return(m,vr) |= Γ ⇒ [v : T ∪T ′,vr : T ′∪T]Γ

API-Call
Γ ⊢ va : T ′ Γ ⊢ v : T

Γ,v := apicall(m,va) |= Γ ⇒

v : T ∪model_ f wd(m,va),

va : T ′∪model_bwd(m,v)

Γ

Figure 3.4.: Bi-directional propagation rules.

55

Binding Constant Value

As mentioned earlier, we focus on constant texts in the code and the constant Ids that are

associated to UI. An assignment of a constant string to a variable adds a new mapping from

the variable to a set holding the string to the context. For a constant Id, we need to make

sure the Id is indeed a resource Id (e.g., layout Id in Android apps or an Id for a specific UI

element). This check is modeled by predicate resource_id(). If the prerequisite satis-

fies, updating the context is similar to the constant string assignment, except that the type

set is the extracted texts from the corresponding UI through function extract_text().

For instance, if the constant Id is associated with a typical login screen, the extracted text

set may often be {Username, Password, Login}.

Propagation for Assignment

Rule Unary-Assignment updates the context for both the LHS and RHS variables with

the union of the two separate type sets. Note that it allows the tags from LHS to propagate to

RHS and vice versa through the union operation (i.e., bi-directional propagation). Use the

statement jsonString = data at line 18 in Figure 3.1 as an example. Assume before

evaluating this statement, Γ(jsonString) = {avatar_url, username, created_at, content} and

Γ(data) = {data} via previous evaluation steps. After evaluating this statement, the type

sets for both variables jsonString and data are updated to {avatar_url, username,

created_at, content, data}. This shares some similarity with type unification in classic type

inference. However, as we will see next, unification does not properly model the intended

propagation behavior for binary operations and φ functions.

For a binary assignment, we cannot simply union all the type sets of the LHS and RHS

variables and associate the resultant type set to all the variables, which is what classic type

inference would do. We observe that this is undesirable as it allows the type set of a RHS

variable to be propagated to another RHS variable while the operation does not induce any

data flow between the two variables. Intuitively, assuming the two RHS variables are v1

and v2, v1 being associated with a sensitive tag does not entail v2 having the same sensitive

56

tag (by the operation). Thus, as specified by Rule Binary-Assignment, the propagation is

conducted as follows. The type sets of the RHS variables are unioned and inserted to the

type set of the LHS variable. Only the part of the LHS type set that is not in the type set

of v1 is propagated to v2 and only the part of the LHS type set that is not in the type set of

v2 is propagated to v1. There is a corner case in which the two RHS variables are the same

one, e.g.,a = b ⊕ b. The updated type set for b is Γ(b) ∪ (Γ(a) − Γ(b)), which is equal

to Γ(a) ∪ Γ(b). In other words, this special case behaves the same as a unary assignment.

The propagation for φ statements has the same nature (Rule Phi-Assignment).

We use a real example from an Android app com.mojo.animewallpaper to show how

our propagation rule for φ statements eliminates false alarms. The simplified code snippet

is shown in Figure 3.5a. If a certain condition satisfies, the device Id is assigned to variable

x at line 2. The detail of acquiring the device Id is omitted but eventually a constant string

“android_id” is added to the type set of x. If the condition doesn’t satisfy, a random value

is generated as the requested Id at line 4 and stored to variable x, which is immediately

used at a sink point at line 5. After the branch, variable x, whose value is either the real

device Id or a random value, is used elsewhere.

From the perspective of φ representation, we know that right before the x is used at

line 7, we have a φ statement as x@7 = φ (x@2, x@4). The data flow for the several oc-

currences of x is described by the solid arrows in Figure 3.5b and the propagation relations

are shown by dashed arrows.

Consider a naive bi-directional propagation that simply unions all the type sets. During

the first iteration, “android_id” is propagated to x@7 via forward propagation. Nothing

is backwardly propagated to x@2 or x@4 from x@7. Therefore, at the end of the first

iteration, Γ(x@2) = Γ(x@7) = {android_id} and Γ(x@4) = /0. Then during the second

iteration, if we directly propagate the type set of x@7 to both x@2 and x@4, we would

get Γ(x@4) = {android_id}, which is later propagated to the sink point at line 5. Thus a

sensitive data disclosure is reported which is a false alarm. In contrast, our propagation rule

supports the mutual exclusion of the type sets in the two respective branches. Specifically,

we only backwardly propagate Γ(x@7) − Γ(x@2), i.e., an empty set, to x@4. At last, the

57

1 if (...) {

2 x = getDeviceId(); // x is tagged with "android_id"

3 } else {

4 x = some_random_uuid(); // gen random value for x

5 Log.d("Random: ", x); // sink

6 }

7 use(x);

(a) Simplified code snippet.

x@2

x@7 = φ (x@2, x@4)

x@4

sink@5
android_id

(b) Data flow and type propagation.

Figure 3.5.: App com.mojo.animewallpaper: code example and bi-directional propagation
for φ .

type set of x@4 stays unchanged and the sink point does not observe any sensitive type for

the variable. Thus no sensitive data disclosure is reported.

Propagation for Method Calls

Propagation through a method call occurs at passing argument from the caller and re-

turning value from the callee. Therefore, we define two separate rules for these two events.

Note that these two rules handle method calls whose implementations are included in the

analysis. We also propose a special rule for propagation over API functions, the implemen-

tations of which are typically invisible during analysis.

Rules Method-Call-Param and Method-Call-Return union the type sets. A concrete ex-

ample for rule Method-Call-Param is the instantiation call at line 10 in Figure 3.1. The

constructor at line 17 is invoked and the value held by variable dt is passed to variable

58

data. Then constant value “data” associated with dt is propagated to data and “user-

name” associated with data is backwardly propagated to dt.

Rule API-Call does not directly propagate the type sets between parameters and the

return value. BIDTEXT relies on the model for the API function for proper propagation.

Prior static taint analysis [4,35,36] have shown that it is effective to simply propagate from

all parameters to the return value and the receiver object (i.e.,this reference in instance

method calls). However, this naive approach does not work well in bi-directional propaga-

tion. We need to investigate the type correlations for the variables involved in an API call,

including all the parameters and the return value.

Some API functions may not support fully bi-directional propagation among the vari-

ables. For example, variable name can be used to type value in statement value=Hash-

Map.get(name) but not the reverse according to the semantics. Specifically, if name

holds some sensitive constant strings, we can infer that value may hold sensitive in-

formation, but not the other way around. If we ignore this reference, after evaluating

the statement under context Γ, we have Γ′(name) = Γ(name) and Γ′(value) = Γ(value) ∪

Γ(name). Many API functions, on the other hand, can be applied with the naive propaga-

tion policy, unioning the type sets of all variables. For example, we have Γ′(ret) = Γ′(str) =

Γ(ret) ∪ Γ(str) after evaluating statement ret = str.toUpperCase() under context

Γ. In the rule, the behavior depends on functions model_fwd() and model_bwd()

which define the propagation policies from va to v and from v to va, respectively.

We formalized our approach to identifying and bi-directionally propagating constant

texts in a type system and developed a set of propagation rules based on our abstract lan-

guage in Figure 3.3. While the rules are general for our language, in practice we need

to perform a number of enhancements to the rules to handle real-world language/program

features. These enhancements are discussed in next section.

59

CheckAlert ::= IF(vc) {alert(vm)}

(a) Specialized statement.

Check-Alert
Γ ⊢ vc : T Γ ⊢ vm : T ′

Γ, IF(vc){alert(vm)} |= Γ ⇒ [vc : T ∪T ′]Γ

(b) Propagation rule.

Figure 3.6.: Abstraction and propagation rules for check-and-alert cases.

3.3.3 Practical Enhancements

There are two main practical enhancements to our formal model that are critical to the

effectiveness of BIDTEXT.

Check and Alert

It is common in real programs to prompt some alerts to the user or write to the log

file if a condition check fails. In this case, we can use the alert/log message to infer what

the corresponding variables involved in the condition check may hold. For example, an

Android app can alert the user about some previous errors, e.g., some required inputs are

missing, by showing a short message on the screen. A typical implementation looks like

the following.

1 if (str == null || str.isEmpty()) {

2 Toast.makeText(this, "Please Enter Password", 1);

3 }

We can type variable str with the constant text “Please Enter Password” and propa-

gate it through the aforementioned rules.

The abstraction and the corresponding propagation rule are shown in Figure 3.6. This

applies to a set of API functions, called the alert functions.

60

String Concatenation

String concatenation is common in real-world apps. A concatenation operation may

involve both constant values and multiple variables. If we simply union the type sets of all

the involved variables and update the variables with resultant type set, we may introduce

false positives. Furthermore, the associations between the constant strings (involved in

the concatenation) and the variables (involved in the concatenation) also need to be prop-

erly identified. A simple strategy that associates all constant strings to all variables also

produces a lot of false positives. For example, building a URL often involves multiple

variables, each holding a value as part of the HTTP request. The variables can be either

sensitive (e.g., password) or insensitive (e.g., user comment). We need to distinguish the

exact types correlated to the variables. Consider the following example, in which a typical

URL is constructed.

1 url = "http://.../login?username=" + un + "&pwd=" + p;

At the bytecode level, the above statement is converted to:

1 builder0 = new StrinBuilder("http://.../login?username=");

2 builder1 = builder0.append(un);

3 builder2 = builder1.append("&pwd=");

4 builder3 = builder2.append(p);

5 url = builder3.toString();

Assume the model for API StringBuilder.append() entails fully bi-directional

propagation, i.e., we propagate the type sets of all involved variables to each other. The

constant string “http://.../login?username=” is propagated to builder0, builder1, un,

builder2 and p. A later text analysis would indicate that both un and p are associated

with the sensitive text “username”, which is incorrect for variable p. Similarly, “&pwd=”

will be propagated to un, which causes a false alarm.

However, if we do not allow the propagation from the StringBuilder instance

(e.g., builder0) to the appended variable (e.g.,un), that is, the red and blue edges are

61

const0

builder0

const1

builder1

un

builder2

p

builder3

url

http://.../login?username= &pwd= &pwd=

Figure 3.7.: Propagation graph for a simple string concatenation.

Str-API

api_w_str(m) Σ ⊢ va : E

Γ′ = string_partition(m,E)

Γ,v := apicall(m,va) |= Γ ⇒ Γ∪Γ′

Figure 3.8.: Propagation rules for string concatenation.

removed from Figure3.7, then neither “username” nor “pwd” could be propagated to un or

p. As a result, we cannot infer that these two variables may hold sensitive information.

The expected propagation, according to the semantics of the URL string, is that “user-

name” is propagated to un, and “pwd” to p, exclusively. We observe that it is impossible

to enforce such propagation through API models (e.g., the model for append()) as an

API call may only represent a local operation that does not have the global view of the

concatenated string. To address the problem, we need to analyze the entire concatenated

string produced at the end. In our example, we ought to examine the final result associated

with url in order to associate the appropriate text to variables un and p. Therefore, we

need to enhance our type system with the following string analysis.

Rule Str-API in Figure 3.8 determines if an API call has a string argument va with

a well-defined format through function api_w_str(). For example, new URL(str)

is such a function as it implies the variable str is a string of the url format. If so, the

string is of interest. BIDTEXT computes an abstract string E for va, which is stored in a

62

Strcat
Σ ⊢ v1 : E1 Σ ⊢ v2 : E2

Σ,v := strcat(v1,v2) |= Σ ⇒ [v : E1 ·E2]Σ

Strcat-Nil
Σ ⊢ v1 : nil Σ ⊢ v2 : E2

Σ,v := strcat(v1,v2) |= Σ ⇒ [v : v1 ·E2]Σ

Str-Const-Assign
Σ,v := t |= Σ ⇒ [v : t]Σ

Str-If

Σ,st |= Σ ⇒ Σt Σ,s f |= Σ ⇒ Σ f

Σt ⊢ v : Et Σ f ⊢ v : E f

Σ, IF(∗){st}ELSE{s f } |= Σ ⇒ [v : Et | E f]Σ

Str-LOOP-Closure
⊥,s |=⊥⇒ Σ′ Σ′ ⊢ v : v ·E Σ ⊢ v : E0

Σ,LOOP{s} |= Σ ⇒ [v : E0 · (E)
*]Σ

Str-LOOP-Simple
⊥,s |=⊥⇒ Σ′ Σ′ ⊢ v : E v 6∈ E

Σ,LOOP{s} |= Σ ⇒ [v : E]Σ

Figure 3.9.: Computing abstract strings.

string context Σ that maps a variable to an abstract string. An abstract string is a regular

expression including both constant strings and variables. The abstract string is partitioned

by the function string_partition() so that the variables in the regular expression

are associated with the appropriate texts. For the above example, the rule produces Γ′

= {un : {username}, p : {pwd}}. We then combine Γ′ into the current context Γ and

further propagate the generated texts. Next, we will first explain how the abstract strings

are computed and then the string_partition() function.

The rules for computing abstract strings are shown in Figure 3.9. The interpretation

of the rules is similar to that for our type system. One difference is that we use the string

context Σ instead of the type context Γ. Rule Strcat simply concatenates the two abstract

strings of the operands. Rule Strcat-Nil handles the case in which the first operand does not

63

have any mapping, meaning that it is a string variable encountered for the first time. In this

case, the variable itself is concatenated to the resulting string. It is similarly handled when

the second operand does not have mapping and the rule is elided. Rule Str-Const-Assign

handles the constant string assignment.

Rule Str-If specifies that for a conditional statement, BIDTEXT computes the string

contexts for the true and false branches separately. For any variable that is present in the

string context(s), the resulting abstract string is an alternation of the abstract strings in the

branches. Consider the following code snippet.

1 if(c) {

2 str := strcat("&UserId=", uId);

3 } else {

4 str := strcat("&sessionId=", sId);

5 }

The abstract string for variable str is (“&UserId=”·uId) | (“&ses-sionId=”·sId).

Rule Str-LOOP-Closure specifies that for a loop, BIDTEXT first computes the string

context for the loop body with an empty string context and then aggregates the resulting

abstract strings to the original string context. In particular, if the abstract string for a vari-

able v also contains v, it indicates the resulting string has recursive structure (caused by the

loop), BIDTEXT hence associates v to a kleene closure in the context outside the loop. Tail

recursion is similarly handled. Currently, BIDTEXT only handles regular languages, which

is sufficient for most cases we encountered. Rule Str-LOOP-Simple specifies that if there

is no recursive structure, the abstract strings are simply copied from the context of the loop

body to the context outside the loop. For the following example, BIDTEXT produces the

abstract string “Output:”·(“A”)* for variable str.

1 str := "Output:";

2 for (...) {

3 str := strcat(str, "A");

4 }

64

As shown by Rule Str-API, the abstract string at an API that specifies the format of the

string is partitioned to acquire the texts for the variables within the abstract string. This is

done by calling string_partition(). This function has a number of built-in parsers

that can parse the different string formats based on the API name. For example, if the

API is URL(), it uses the parser for url. Particularly, the parser searches for symbol “?”,

the part after the symbol is parsed by “([^=]*)=([^&]*)” with the first part being the key

and the second part the value. If the key is a constant t and the value is a variable v, Γ is

updated with the mapping from v to t. BIDTEXT also has parsers for other formats such

as SQL queries. For example, two mappings {v1 : {password}, v2 : {userid}} can be

extracted from an abstract string denoting a SQL update “update TABLE set password=”·

v1· “ where userid=”· v2.

For the prior URL example, append() is essentially a strcat(). According to the

rules, the final abstract string for url is “http://.../login?username=”· un· “&pwd=”· p. It

is partitioned so that un is mapped to {username} and p is mapped to {pwd}.

3.3.4 Disclosure Analysis

After the type set computation converges, BIDTEXT checks whe-ther arguments at the

sinks points hold any sensitive data via textual analysis. If the type set information indicates

the sensitiveness of an argument, we report a potential disclosure.

The process to determine the sensitiveness of a variable with a set of associated con-

stant texts is presented in Algorithm 2, which assumes the text set T and a set of sensitive

keywords KWD. For each collected string (i.e., word, phrase or sentence), BIDTEXT first

conducts some preprocessing. For example, “EmailAddress” is converted to “email ad-

dress”. If a string contains more than one sentence, it is split using the standard sentence

division method implemented in Stanford Parser [12]. If the string matches any keyword,

we check whether it is a single word. If so, we put the string into S which holds all sensitive

strings. S can be used to decide what sensitive information is disclosed after the algorithm

finishes. If the string is a phrase or a sentence, we need to check if it is the negation of a

65

Algorithm 2 Sensitiveness determination.
determine_sensitiveness(T , S, KWD)

1: for all t ∈ T do

2: t ′ = preprocess(t)

3: if t ′ matches in KWD then

4: if t ′ is a word or t ′ doesn’t match any negation template then

5: S = S ∪ t

6: end if

7: end if

8: end for

sensitive keyword. For example, “do not enter password here” tells the user that the input

field should not contain any password. Even though the string matches a sensitive keyword

“password”, we do not consider it sensitive. So if the corresponding variable does not have

any other associated sensitive texts, it is treated insensitive and the sink does not have a

sensitive data disclosure problem.

We use Stanford Parser [12] to parse a phrase or a sentence into a syntax tree, which

is then converted to a dependency relation (please refer to [63]). Based on the dependency

relation, BIDTEXT searches the negation word “not” and then checks the auxiliary word

right before the negation word. It also examines if there exists a subject noun word before

the auxiliary word. By combining the auxiliary word and the possible subject word, BID-

TEXT can identify whether the phrase/sentence is imperative or declarative. For example,

“do not” and “you should not” are imperative negations but “you did not” is declarative

negation. BIDTEXT only considers the imperative negation as a negation (of sensitive key-

word). In such cases, the text is not sensitive.

3.4 Implementation

We implemented BIDTEXT to detect sensitive data disclosures in Android apps. BID-

TEXT is built on top of WALA [28], which parses the Android DEX bytecode to interme-

66

diate representations. We implemented the algorithm in [3] to collect possible entry points

(e.g.,onCreate for an activity) in the target Android app. For each entry point, BIDTEXT

builds the call graph and the dependency graph. The constant strings are propagated on the

graphs. We do not distinguish the correlated text for each UI element as in [59]. Instead,

all elements in one layout file are associated with all the texts found in that layout file.

BIDTEXT relies on a keyword set to determine the sensitiveness of computed texts.

To acquire the keyword set, we ran BIDTEXT on 2,000 randomly selected apps and ex-

tracted all texts discovered for each sink. We then manually inspected these texts to con-

struct the keyword set. In order to detect traditional data closures that are due to data-

flow between source APIs and sink APIs instead of texts, we assign some sensitive tex-

tual keywords to the source APIs that must expose sensitive information so that BIDTEXT

can propagate the keywords. For example, we assign “imei” to API TelephonyMan-

ager.getDeviceId().

We leverage Stanford Parser [12] as the engine for analyzing phrases and sentences.

BIDTEXT currently only supports English.

For better efficiency, BIDTEXT also performs on the fly type set reduction. Specifically,

when a text set reaches a certain size, garbage collection is conducted by filtering out the

texts in the type set that do not indicate sensitiveness and those that are redundant.

3.5 Evaluation

All experiments are performed on an Intel Core i7 3.4GHz machine with Ubuntu 12.04.

The task of analyzing each app is given the maximum memory of 10GB and the maximum

analysis time of 20 minutes. The subjects are a collection of 10,000 Android apps down-

loaded from Google Play in March 2015. The sink points used in the evaluation contain

all the logging operations in Android and the Apache HTTP access APIs that are com-

monly used in Android apps. This is also the standard setup for many existing static taint

analysis [40, 59]. The other types of sink points can be easily added to BIDTEXT.

67

3.5.1 Pilot Study

As discussed earlier, BIDTEXT heavily relies on accurate propagation models for API

method calls. However, Android framework contains thousands of API functions, making

it almost infeasible to manually build the models for all API functions. Our approach is to

randomly select 2,000 apps and run BIDTEXT on these apps. Then we inspect the results to

discover popular API functions and create models only for those functions. These models

are later used in the larger scale study.

During the pilot study, we also observe a kind of false positive that appears frequently.

It is caused by a Facebook library used by many apps. The library logs an error message

when it fails to obtain the device Id. The code snippet is abstracted as follows.

1 try {

2 /* acquire device id */

3 } catch (Exception e) {

4 Utility.logd("android_id", e);

5 }

The message e is typed with “android_id”, which is a sensitive keyword. But the meaning

of this message is indeed that the action of acquiring the device Id fails. Solving this issue

requires in-depth semantic analysis of e which is not supported by BIDTEXT. Since the

pattern is fixed, we post-process all the reports to filter out this pattern for both the pilot

study and the later large scale study.

3.5.2 Unification vs. Bi-directional Propagation

In classic type inference, given an assignment statement such as z=x+y and z=φ(x,y),

the updated type sets of x, y, and z are the union of all three original type sets. In Sec-

tion 3.3.2 (Rules Binary-Assignment and Phi-Assignment in Figure 3.4), we mentioned

that such a unification based approach may produce a lot of false positives and hence BID-

TEXT makes use of a bi-directional propagation strategy that avoids propagating type sets

68

between right-hand-side operands (i.e.,x and y in the example). In this experiment, we

want to compare these two propagation strategies.

Due to the lack of ground truth, such a study requires manually inspecting the reported

disclosure defects and determining if they are false positives. Among the 2000 apps tested

in the pilot study, we selected the first 60 apps whose data disclosure path (i.e., the data flow

subgraph that includes the path from the source to the sink and the path that the sensitive

text is propagated from its origin to the sink) involves φ statements and/or binary operations

with the unification based propagation policy. We re-run BIDTEXT on the 60 apps with the

bi-directional propagation policy and compare the two sets of results.

Among these 60 apps, 42 of them are reported by both the unification policy and the bi-

directional policy; 25 of them contains flows only reported by the unification policy. Note

that the two do not add up to 60 because some apps have multiple reported disclosures,

some being reported by both policies and the others being only reported by the unification

policy. We manually studied the 25 cases reported by the unification policy and found that

they are all false positives. We have shown one sample false positive in Section 3.3.2.

3.5.3 Large Scale Evaluation

In this experiment, we use 10,000 apps not covered by the pilot study. The apps have a

minimum size of 6.46KB for the APK files and a maximum size of 49.94MB. The average

size of the APK files is 9.17MB. Among these apps, there are two that do not contain any

DEX bytecode in the APK files. For the remaining apps, the minimum size of the bytecode

files (classes.dex) is 452 bytes and the maximum size is 10.32MB. The average size

of the bytecode files is 2.53MB.

Results

The total analysis time for the 10,000 apps is 587.6 hours. Figure 3.10 presents the

distribution of the cumulative analysis time for all the 10,000 apps. We divide the total

analysis time into three parts according to how the analysis on an app terminates. As

69

42%

51%

0%

25%

50%

75%

100%

Figure 3.10.: Distribution of accumulative analysis time for all apps.

2293

1331

472

200
83 27

52.0%

82.3%

93.0%
97.5% 99.4% 100.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0

500

1000

1500

2000

2500

0~1 1~5 5~10 10~15 15~20 20~

#Apps

CDF

Figure 3.11.: Distribution for the analysis time (in minutes) of the apps reported with sen-
sitive data disclosures.

70

TEXT-Only, 36.0%

API-Only, 0.3%

TEXT+API, 9.8%
TEXT+GUI, 27.4%

API+GUI, 0.2%

TEXT+API+GUI,

7.2%

GUI-Only, 19.1%

(a) By sources.

Logging-Only,

61.7%

Non-Logging-Only,

3.2%

Both, 35.1%

(b) By sinks.

Figure 3.12.: Breakdown of the reported apps.

mentioned above, we set the analysis timeout to 20 minutes for each app. In our evaluation,

856 apps (8.56%) time out and the total analysis time account for 49% of the total time

consumed for the 10,000 apps. We have 293 other apps of which the analysis ran out of

memory. The total time for these apps accounts for 9%. For the remaining 8,852 apps that

finished normally take only 42% of the total analysis time. Observe in Figure 3.10 that the

first 7,500 apps take less than 15% of the total time. Among the 8,852 apps, the minimum

analysis time is 0.2 seconds and the maximum time is 1197.4 seconds. The median is 24.9

seconds while the average time is 99.9 seconds. The largest app that terminates normally

has the APK size of 49.94MB, and the bytecode size of 10.32MB.

Overall, BIDTEXT reports 4,406 apps with sensitive data disclosure problems. We

show the analysis time distribution of these apps in Figure 3.11. The blue bars show the

71

17.5%

53.9%

0.0% 25.0% 50.0% 75.0% 100.0%

Traditional

SUPOR

BidText

(a) All sinks.

15.3%

60.4%

0.0% 25.0% 50.0% 75.0% 100.0%

Traditional

SUPOR

BidText

(b) Non-logging sinks.

Figure 3.13.: Comparing BIDTEXT with static tainting (tracking specific APIs) and SU-
POR [59].

number of apps that finished within a time period. For instance, 472 apps took more than

5 minutes but less than 10 minutes. We also see that 27 apps timed out in the experiments,

although partial results were collected before the analysis terminated. The red line presents

the cumulative analysis time: 93.0% of the apps were analyzed within 10 minutes. We can

conclude that BIDTEXT is efficient to be applied to market-scaled apps.

We also show the breakdown of the 4,406 apps by the sources of data disclosures in

Figure 3.12a.

There are three types of sources: (1) TEXT – constant texts in the code that denote

sensitive data; (2) API – sensitive API (recall that BIDTEXT also detects data disclosures

originating from sensitive APIs by associated artificial texts to the source APIs such as

Location.getLatitude()); and (3) UI – constant texts retrieved from user interfaces

that denote sensitive data. Observe that the majority of disclosures are/can be detected by

the sensitive text labels. Some data disclosure defects can be recognized through multiple

sources (e.g., TEXT+API), meaning that there are some (bi-directional) data flow paths

72

from a sensitive API to a sink and from some constant text to the same sink. Consider

the following example. The data flow path 2→6→7 denotes a disclosure originating from

TEXT (i.e., “android_id”) and the path 4→6→7 denotes a disclosure originating from API

(i.e., “getDeviceId()”).

1 if (fails_to_obtain_imei()) {

2 id = Settings.Secure.getString(resolver, "android_id");

3 } else {

4 id = telephonyManager.getDeviceId();

5 }

6 json.putString("id", id);

7 http_sink(json.toString()); // sink

The breakdown of the apps by the sink types is shown in Figure 3.12b. Note that 64.9%

of the reported apps contain disclosures due to logging. Although data disclosure through

logging is substantially mitigated by access control in the latest version of Android, it is still

a security concern for legacy Android systems such that most existing works [9,35,36,59]

report these disclosures. About 38.3% of the reported apps (16.9% of all the apps evaluated)

contain sensitive data disclosures due to to non-logging sinks. They are serious threats even

in the latest Android systems.

Figure 3.13 shows how BIDTEXT compares with an implementation of the traditional

taint tracking technique (tracking disclosures from source APIs through forward data-flow

similar to [4]) and SUPOR [59], which is a technique that tracks disclosures from sensi-

tive UI elements (e.g., input boxes) through forward data-flow. BIDTEXT always reports a

super-set of those reported by the classic tainting and SUPOR. In the figure, the numbers of

apps reported by tainting and SUPOR are normalized to those reported by BIDTEXT. Ob-

serve that they only report 17.5% and 53.9% of those reported by BIDTEXT, respectively.

Even combining the two can only detect 64.0%. If only taking non-logging disclosures

into account, they report 15.3% and 60.4% of those reported by BIDTEXT. This attributes

to both the new text label correlation analysis and the bi-directional type set propagation

strategy.

73

22.0%

29.5%

23.7%

11.4%

6.4%

2.9%
1.5% 1.4% 1.2%

0.0%

10.0%

20.0%

30.0%

1~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81~

Figure 3.14.: Length distribution of the emitted paths for the reported apps. X-axis shows
the length of the paths.

We present the length distribution of the emitted data disclosure paths for the 4,406

apps in Figure 3.14. Though some paths tend to be very long (more than 80 elements),

most of them are relatively short. More than 75% of the paths require less than 30 steps

from the origination of the sensitive texts to the sink points.

False Positives and False Negatives. It is critical to understand the quality of the reported

defects. Due to the lack of ground truth, we had to perform manual inspection. Studying

the full set of results is infeasible. Hence, we randomly chose 100 reported apps with a

uniform size distribution for manual inspection. The results are presented in Table 3.1.

The columns indicate the sources of the disclosures. Row Total shows the total number

of reported apps for each sources. Row Only shows the number of apps that only have

reported disclosures falling into one category. The last row shows the number of false

positives.

Observe that the 10 false positives are exclusive. Therefore, the false positive rate is

10%. The causes for false positives will be discussed in Section 3.5.3. We do not count the

false negatives because we don’t have the ground truth.

Among the 84 apps where disclosures are reported by code text analysis, 62 apps con-

tain paths that can be only detected by our approach via text correlation analysis, i.e., the

data used at sink points neither come from any UI inputs nor from traditional source APIs.

74

Table 3.1.: Manually inspected evaluation results for 100 apps.

TEXT API UI

Total 84 22 39

Only 44 2 14

FP 3 0 7

In other words, 62 of them cannot be detected by classic tainting or SUPOR. This ratio is

consistent with that in Figure 3.13 for the larger experiment. The other reported disclosures

have the sensitive data coming from these two categories of sources. They are reported by

both BIDTEXT and the existing technique(s). Another interesting finding is that BIDTEXT

often produces a shorter disclosure path. A typical scenario is that there is a long data flow

path from a UI input element to a sink. However, mid way through the path, the (sensitive)

data is put/get to/from some container with a sensitive textual key, which allows BIDTEXT

to report a shorter path from the put/get operation to the sink. The benefits of shorter paths

are two-folded: less human efforts needed for inspection and detecting more disclosures

(because the full path from the source points to the sink points might be complicated, in-

volving inter-component communications, such that the tool may fail to traverse the full

path).

Case Studies

We observe many cases in which sensitive textual keys appear together with data in key-

value operations, e.g., constructing a name value pair (e.g.,com.gunsound.eddy.fafapro),

inserting data into a hash map (e.g.,me.tango.fishepic), retrieving/adding data to persistent

storage through an instance of SharedPreferences (e.g., com.ifreeindia.sms_mazaa)

or putting data into a JSON object (e.g., com.mobilegustro.war.battle.air.force). BIDTEXT

recognizes the sensitiveness of corresponding data via text correlation analysis.

75

In the following, we show a code snippet adopted from app com.-pro.find.differences

that discloses sensitive device information to Web servers.

1 void obtainDeviceInfo() {

2 TCore.aid = Settings.Secure.getString(resolver,

"android_id");

3 }

4 void connectWebServer() {

5 Map map = new HashMap();

6 safePut(map, "android_id", TCore.aid);

7 String params = convertURLParams(map); // omitted

8 http_sink(params); // sink

9 }

10 void safePut(Map map, String k, String v) {

11 map.put(k, v);

12 }

The method call at line 2 returns system information based on the given key value.

For example, a unique Id for the device is obtained if “android_id” is given as the key. If

the key is “enabled_input_methods”, the return value contains a list of input methods that

are currently enabled. Therefore, the sensitiveness of the return value depends on the key.

BIDTEXT works by correlating the textual key with the return variable to decide whether a

later sink operation involves sensitive data or not.

In the above example, the variable TCore.aid is typed with the constant text “an-

droid_id” at line 2, which is later propagated to parameter v of method safePut() at

line 10. v is inserted into the hash map at line 11. Note that “android_id” at line 6 is

propagated to k@10 which is further propagated to the hash map and variable v according

to the corresponding API model for propagation. Along the data flow, the constant text

is propagated to params@7 that is eventually used at the sink point at line 8. BIDTEXT

reports the data disclosure.

76

False Positives

One of the 10 false positives is caused by unmodeled API functions. The corresponding

code snippet is from app at.zuggabecka.-radiofm4.

1 uidx = cursor.getColumnIndex("username");

2 iidx = cursor.getColumnIndex("_id");

3 id = cursor.getLong(iidx);

4 sink(id);

At line 1, a sensitive keyword “username” is correlated with the receiver object cur-

sor that is related to a database query. Then all uses of cursor propagate the text label

to other variables, e.g., the return value of a relevant method call. Thus, id at line 3 is

typed with “username”. Later when it is used at a sink point, BIDTEXT reports a sensitive

data disclosure after analyzing the corresponding type set. To remove this false alarm, we

can build a model for API Cursor.getColumnIndex(key) to only propagate type

set from key to the return value, avoiding propagating to the receiver object. Then in the

above code snippet, only variable uidx@1 is typed with “username”. Variable id that

appears at the sink point is only typed with “_id” which is not considered as a sensitive

keyword. Therefore there is no disclosure problem with the model.

All the other nine false positives are caused by incorrect recognition of text, two for

code text and seven for UI text.

App com.netcosports.andalpineski contains a text label “Apps-_lang[apps_lng_iso2]”

which indicates the language of the app. However, it contains a predefined sensitive key-

word “lng” which is mostly used as an abbreviation of “longitude”. Failing to understand

the meaning of the text, BIDTEXT incorrectly reports a sensitive data disclosure.

App com.wactiveportsmouthcollege has a UI text of “Pin to desktop” where sensitive

keyword “Pin” is used as a verb. Failing to understand it leads to a false positive. All

other false positives have similar causes – sensitive keywords in a phrase or sentence do

not indicate any sensitive information. Possible solutions for this type of false positives

77

include integrating more advanced NLP techniques with program analysis to understand

the meanings of the text.

3.5.4 Discussion

One limitation of BIDTEXT lies in that the text in code may not be in a generalized

format. For example, some developers use “lng” for “longitude” whereas others use “long”

for it, which is a more general word in English. If we treat “long” as a sensitive keyword,

we can expect many false positives. In addition, developers tend to combine several words

(or abbreviations) into a single word, which makes it more difficult to determine whether

the correlated data are sensitive or not.

In the future, we plan to improve our approach in the following aspects. The first

one is to discover text labels in the names of method calls, if they are not obfuscated, and

variable/field names. The second improvement is to consider code comments if source code

is available. The third one is to improve the NLP aspect by putting the keywords in their

program context. Doing so, we may be able to recognize “long” indeed means longitude.

3.6 Related Work

A lot of prior research has focused on detecting sensitive data disclosures, either stati-

cally or dynamically, for mobile apps [1, 4, 31, 35, 36, 64]. Most of them consider specific

APIs as sensitive source points while BIDTEXT analyzes text labels to determine if a vari-

able can hold sensitive data. SUSI [37] gives a comprehensive list of the data sources in

Android, but it does not assume the data obtained from the sources must be sensitive. In

addition, even if the state-of-the-art static detectors, e.g., FlowDroid [35, 36] and Droid-

Safe [64], had been enhanced with various ways of determining data sensitiveness, they

would likely not be able to detect some sensitive data disclosures reported by BIDTEXT

such as our motivating example, where the sensitiveness of the data is determined after the

sink point and there is no forward data-flow from the sensitiveness revelation point and

78

the sink point. BIDTEXT, however, leverages bi-directional propagation to address this

problem.

Huang et al. developed type-based taint analysis to detect information leaks in Java-

based Web applications and Android apps via type inference [65, 66]. They abstract the

information flow analysis into a type system and check if any type error occurs. Their tech-

nique scales well without using advanced points-to analysis [35, 36, 64]. Their technique

still follows the traditional definition of data disclosure, which is a forward data flow path

from the source to the sink. In other words, it does not propagate data sensitiveness in a

backward fashion. As such, it may not be able to report many disclosures reported by BID-

TEXT, including the motivating example. Furthermore, their type system does not leverage

text information. Ernst et al. also developed a type-based taint analysis system [67]. Their

technique associates a few (security) types such as LOCATION, INTERNET, and SMS to

sources and sinks and have a set of predefined policies such as LOCATION can only be

compatible, or type-checked, with INTERNET. So if LOCATION reaches a program point

with the SMS type, a leak is reported. Their flow analysis is forward whereas BIDTEXT is

bi-directional. And BIDTEXT leverages text labels.

SUPOR [59] and UIPicker [43] discover sensitive information on user interface through

static analysis. However, they essentially belong to the traditional forward data-flow based

techniques. AsDroid [40] collects the set of API calls in an event handler and compares

the meaning of these API calls with the UI text of the event to detect unwanted/unexpected

app behavior. In contrast, BIDTEXT types individual variables in the program with text

labels and leverages a type system that allows bi-directional propagation. Researchers also

combine code and comment analysis to detect bugs or inconsistencies [68–70]. We envi-

sion comment analysis can leverage our bi-directional type system so that the information

in comments can be leveraged to analyze fine-grained and in-depth app behavior. In addi-

tion, WHYPER [7] and AutoCog [8] apply NLP techniques to app’s descriptions to obtain

a comprehensive view of the app and check if the required permissions are appropriately

specified in the descriptions. Besides, [71] and [72] apply NLP techniques on API descrip-

79

tions or documents to infer method specifications. We can leverage these techniques to

automate the generation of API models used in BIDTEXT.

3.7 Summary

We propose BIDTEXT, a novel static technique to detect sensitive data disclosures.

BIDTEXT identifies text labels appearing in both code and UI, treats them as types, asso-

ciates them to the corresponding variables, bi-directionally propagates the types through

data flow and eventually attributes them to sink points that potentially disclose sensitive

information. At the end, the parameters at the sink points have type sets of correlated texts.

Textual analysis is applied to the type sets to determine if the variables may hold sensitive

data. We implement BIDTEXT and preliminarily evaluate it on 10,000 apps downloaded

from Google Play store. The preliminary results show the false positive rate is 10%.

80

4 ASDROID: DETECTING STEALTHY BEHAVIORS IN ANDROID

APPLICATIONS BY USER INTERFACE AND PROGRAM BEHAVIOR

CONTRADICTION

Android smartphones are becoming increasingly popular. The open nature of Android al-

lows users to install miscellaneous applications, including the malicious ones, from third-

party marketplaces without rigorous sanity checks. A large portion of existing malwares

perform stealthy operations such as sending short messages, making phone calls and HTTP

connections, and installing additional malicious components. In this paper, we propose a

novel technique to detect such stealthy behavior. We model stealthy behavior as the pro-

gram behavior that mismatches with user interface, which denotes the user’s expectation of

program behavior. We use static program analysis to attribute a top level function that is

usually a user interaction function with the behavior it performs. Then we analyze the text

extracted from the user interface component associated with the top level function. Seman-

tic mismatch of the two indicates stealthy behavior. To evaluate AsDroid, we download a

pool of 182 apps that are potentially problematic by looking at their permissions. Among

the 182 apps, AsDroid reports stealthy behaviors in 113 apps, with 28 false positives and

11 false negatives.

4.1 Introduction

Android smartphones are becoming increasingly popular. Gartner’s analysis shows that

72.4% of smartphones are based on Android [73]. A prominent characteristic of Android

phones is that users can easily install miscellaneous apps downloaded from third-party mar-

ketplaces without jail-breaking. However, the downside is that Google and other vendors

can hardly control the quality of apps on third-party marketplaces. Adversaries can submit

their malicious apps and tempt users to install with various lures. Juniper Networks Mobile

81

Threat Center reported a dramatic growth in Android malware population from roughly 400

samples in June 2011 [74] to 175,000 in the third quarter of 2012 [75]. Most are present on

third-party marketplaces.

A very popular category of Android malware features steal-thy malicious operations

such as making phone calls, sending SMS messages to premium-rate numbers, making

undesirable HTTP connections and installing other malicious components. It was reported

by three recent studies [19,76,77] that 52-64% of existing malwares send stealthy premium-

rate SMS messages or make phone calls. Note that these actions cause unexpected charges

to phone bills [78, 79]. It was observed that stealthy HTTP requests are also very common

undesirable behavior in malwares [76]. Besides leaking user information, they could also

cause unexpected data plan consumption. In China, it was reported in March 2012 that

more than 210,000 Chinese mobile devices were affected by a kind of malwares that could

make stealthy HTTP connections inducing charges. They caused around 8 million dollars

loss [80].

Despite the pressing need, detecting such malware is challenging as the malicious be-

havior appears to be indistinguishable from that of benign apps. For example, an online

shopping app usually provides operation interfaces to help users conveniently call a service

number or send a query SMS message. Apps providing travel-aid and adult content often

allow users to make phone calls or send messages. Many benign apps allow establishing

background HTTP connections (e.g. weather, stock trading and gaming apps). Many also

allow users to install additional components.

Existing techniques are insufficient in detecting/preventing stealthy malicious behav-

iors. A very important protection mechanism on Android is to allow users to perform

access control by setting application privileges. However, the access control is very coarse-

grained. For example, the SMS messaging capability can either be enabled or completely

disabled. It is hard to decide if we should disable for a given app as many benign apps do

send SMS messages. Taint analysis [1,4,35,36] allows detecting information leak in apps.

But the stealthy behavior in malwares may not leak any private information. Recently,

Google provides the capability of blacklisting certain premium-rate phone numbers [81],

82

which provides a potential way of preventing stealthy SMS messages or phone calls. How-

ever, keeping such a blacklist up-to-date is a non-trivial challenge. In some countries such

as China, there is no difference between a premium-rate number and a regular phone num-

ber.

In this chapter, we propose a novel technique to detect stealthy malicious behaviors

in Android apps. We model stealthy behavior as the program behavior mismatches with

user interface. The intuition is that user interface (UI) represents the user’s expectation of

program behavior. Hence, it can naturally serve as an oracle to detect behind-the-scene be-

havior. For example, an SMS message send triggered by a user interaction that is supposed

to set the background color should be considered malicious. The technique consists of two

components. One is the static program analysis component that attributes the behavior of

interest (e.g. SMS send and HTTP connection) to a top level function with associated UI

(e.g. the onClick() function of a button). The other is the UI analysis component that

makes use of text analysis to analyze the intent described by the corresponding interface

artifacts (e.g. the text associated with the button). Any mismatch will be reported as po-

tentially malicious. In the program analysis component, we classify Android APIs into

different groups. Each group is assigned an intent type such as SMS send and phone calls.

Reachability analysis is performed on control flow graph (CFG) and call graph (CG) to

propagate such intents from the API call sites to top level functions. Note that in event

driven programming, an invocation of a top level function usually denotes an action or a

task that can be considered as a natural unit to reason about stealthiness. The interface

analysis component identifies the text of the UI artifact associated with a top level func-

tion. Then compatibility check is performed between the intents from program analysis

and those extracted from the interface text.

Our contributions are summarized as follows.

• We propose a method to detect Android malware that performs stealthy operations

including SMS message send, phone calls, HTTP connections and component in-

stallations. It is based on the novel idea of detecting mismatches between program

behavior and user interface.

83

• We found that in many cases even though there is no direct match between an API

intent (e.g. SMS send) and the UI text, the API may be correlated with other APIs

that explicitly expose the behavior (e.g. an API call that logs the SMS send to the

mail box). In such cases, the behavior should not be considered stealthy. We propose

an in-depth analysis that considers program dependences between APIs to identify

their correlations and hence improve precision.

• We formally present our design using datalog rules. The design handles a number of

Android-specific challenges.

• We implement a prototype called AsDroid (Anti-Stealth Droid). We collect a pool of

182 apps that have the permissions to perform the malicious operations of interest.

AsDroid reports that 113 of them have stealthy behaviors, with 28 false positives and

11 false negatives.

4.2 Motivating Example

We use a real application Qiyu to motivate our technique. It is a location-based social

networking service application on Android. Some relevant code snippets are shown in

Figure 4.1 and part of the corresponding call graph is in Figure 4.2. The entry function

onClick() (at line 2) is the handler of a button with text “One-Click Register

& Login”. The scenario is as follows. When the user clicks the button, the app checks

the current environmental settings. In most cases, the true branch is taken, in which an

asynchronous task is appended to the task queue and executed (line 5). This causes an

indirect invocation to a predefined handler doInBackground() at line 11, which is

always implicitly called by the Android runtime to perform some background processing

when a task starts to execute. The function transitively calls method A() (in class Woa.BA)

at line 17. The method connects to a website through HttpClient.execute() at

line 18 to perform registration or login. The chain of function calls is also shown on the

left of Figure 4.2. When the test at line 3 fails, the else branch (line 6) is taken. A different

84

1 // In class Qiyu.StartPageActivity

2 public void onClick(View v){

3 if(/*test environment*/){

4 Woa.F f = new Woa.F(v, this);

5 f.execute(new String[0]);//trigger line 11

6 } else ...{

7 Woa.AG.B();//invoke line 21

8 }

9 }

10 // In class Woa.F

11 public Object doInBackground(Object[] objs){

12 //transitively calls Woa.BA.A() at line 17

13 }

14 // In class Woa.BA

15 private org.apache.http.client.HttpClient h;

16 private org.apache.http.client.methods.HttpGet d;

17 public void A(){

18 this.h.execute(this.d); //HttpClient.execute(...)

19 }

20 // In class Woa.AG

21 public static void B(){

22 Woa.U u = new Woa.U();

23 u.execute(...);//transitively calls C() at line 26

24 }

25 // In class Woa.AK

26 public static boolean C(Context c, String s1, String s2){

27 SmsManager sm = SmsManager.getDefault();

28 sm.sendTextMessage(s1, null, s2, null, null);

29 }

Figure 4.1.: Simplified code snippet for app Qiyu.

85

Qiyu.StartPageActivity.onClick() @1

doInBackground() @11

A() @17

HttpClient.execute()

B() @21

C() @26

SmsManager.sendTextMessage()

indirect call @5

2 calls omitted

direct call @7

3 calls omitted

via line 23

H
tt

p
A

cc
es

s S
en

d
S

m
s

Figure 4.2.: Call graph and intent propagation in app Qiyu.

chain of function invocations are made, eventually leading to an SMS message being sent

inside method C() (in class Woa.AK) at line 28 without the user’s awareness. The chain

is shown on the right of Figure 4.2. Note that we omit three function calls between the

asynchronous task execution at line 23 and method C() for brevity.

To detect stealthy behaviors, our program analysis component first attributes top level

functions with intents by analyzing the operations of interest directly or transitively per-

formed by such functions. We classify Android APIs to a few pre-defined intent types.

In this example, HttpClient.execute() at line 18 denotes the HttpAccess intent

and SmsManager.sendTextMessage() at line 28 denotes the SendSms intent. The

intents get propagated upward along the call edges (see Figure 4.2) and eventually aggre-

gated on the top level node onClick(), which is a user interaction function, suggesting

the operations performed by this function should reflect what the UI states. The UI analysis

component identifies the UI artifacts corresponding to the onClick() function, i.e. the

button and its residence dialog. It further extracts the text on these interface artifacts and

performs text analysis to identify a set of keywords. In this example, they are “Regis-

ter” and “Login”. AsDroid looks-up the compatibility of the keywords and the intents

identified by the program analysis component from a dictionary generated before-hand in a

86

training phase. In this case, the HttpAccess intent is compatible but SendSms is not. Our

tool hence reports the contradiction.

There are cases that multiple intents of a top level function are correlated. For example,

a dialog may be popped up after a SMS message send to indicate the success of the send,

even though the button that initiates the send does not have any textual hint about sending

messages. In this case, the SMS send is not stealthy. The display of a dialog has the UiOp-

eration intent. Both the UiOperation and SendSms intents reach the top level function.

We hence analyze if the intents are correlated by analyzing their program dependences.

Since UiOperation is not stealthy, the correlation between the UiOperation and SendSms

intents suggests the sanity of the SMS send behavior.

4.3 Design

In this section, we first define six types of intents that are of our interest. The corre-

sponding APIs are commonly used in Android apps.

SendSms. This intent corresponds to SMS send APIs, including sendTextMessage(),

sendDataMessage() and sendMultipartTextMessage() declared in the class

SmsManager. These API functions are usually executed in the background. An SMS send

through a separated messaging app is not taken into consideration in this research because

it requires the user to explicitly interact with the messaging app to finish the process and

hence is not stealthy.

PhoneCall. It corresponds to a direct phone call, namely, invoking startActivity()

with action android.intent.action.CALL. Malware can leverage the automated

calling mechanism to dial a number without the user’s awareness. Phone calls can also be

made through startActivity()with an action android.intent.action.DIAL.

However, we do not model this API because explicit user approval is needed when the API

is used.

87

HttpAccess. This intent describes HTTP access APIs. It includes URL.openStream(),

URL.openConnection(), AbstractHttpClient.execute(), etc.. HTTP ac-

cess is commonly used in Android apps for a wide range of purposes.

Install. It describes API functions that are for installing other components or applications.

Many Android malwares have their payload as installing another piece of malicious code.

Benign apps may also need to perform installation, which is however usually authorized

or explicitly guided by the user. Modeled functions include Runtime.exec() with

"pm install" as the argument, and ProcessBuilder.start() using "pm" and

"install" to build a new process.

SmsNotify. In some cases, the user does not need to (or cannot) authorize a message send

operation. But after the operation, the app may automatically notify the user that there was

an SMS send. In this case, we should not consider the message send as a stealthy action

even though the user interface that leads to the SMS send operation does not have any tex-

tual implication of the operation. One typical example is that a copy of the message is saved

to the user’s mail-box to record what just happened. Hence, we model the following API

to the SmsNotify intent: ContentResolver.insert() and the destination table is

given by a URL “content://sms”. It means inserting data into the preloaded database

for short messages.

UiOperation. A top level user interaction function may display more user interface el-

ements to allow further interactions with the user. In some cases, UI display operations

may be correlated to some of the aforementioned intents. For example, a dialog may be

popped up after an SMS send to notify the user about the send. In such cases, the SMS

send is not stealthy. To reason about these cases, we associate the UI display API functions

such as ImageView.setImageBitmap(), View.setBackgroundDrawable()

and AlertDialog$Builder.setMessage(), with the UiOperation intent.

88

4.3.1 Intent Propagation

In this section, we describe how intents are propagated to top level functions such that

we can check compatibility with the corresponding UI text. We also describe how to detect

correlation between intents. Intent propagation is based on call graph. The calling con-

vention of Android apps has its unique features, which need to be properly handled. Intent

correlation analysis is mainly based on program dependences. However, correlated intents

do not simply mean there are (transitive) dependences between them.

The analysis is formally described in the datalog language [82], which is a Prolog-like

notation for relation computation. It provides a representation for data flow analysis in the

form of formulated relations. The inference rules on these relations are shown in Figure 4.3

and Figure 4.4. Relations are in the form p(X1, X2, ..., Xn) with p being a predicate. X1,

X2, ..., Xn are terms of variables or constants. In our context, variables are essentially

program artifacts such as statements, program variables and function calls. A predicate is a

declarative statement on the variables. For example, inFunction(F,L) denotes if a statement

with label L is in function F .

Rules express logic inferences with the following form.

H :- B1 & B2 & ... & Bn

H and B1, B2,...Bn are either relations or negated relations. We should read the :- symbol

as “if”. The meaning of a rule is if B1, B2,...Bn are true then H is true.

Relations can be either inferred or atoms. We often start with a set of atoms that are

basic facts derived from the compiler and then infer the other more interesting relations

through our analysis. We use WALA [28] as the underlying analysis infrastructure. We

leverage its single static assignment (SSA) representation, control flow graph, part of call

graph, and the MAY-points-to analysis to provide the atoms.

Atom apiIntent(L,T) denotes an intent T is associated with an API call at L, reflecting

our API classification. Atom hasDefFreePath(L1,L2,X) indicates there is a program path

from program point L1 to L2 and along the path (not including L1 or L2), variable X may

not be defined. This is to compute the defUse(L1, L2) relation that denotes if a variable is

89

apiIntent(L,T) : API call at program point L has intent type T .

def (L,X) : variable X is defined at program point L.

use(L,X) : variable X is used at program point L.

actual(L,M,X) : variable X is the Mth actual argument at call site L.

formal(F,M,X) : variable X is the Mth formal argument of function F().

inFunction(F,L) : program point L is in function F().

funEntry(F,L) : program point L is the entry of function F().

hasDefFreePath(L1,L2,X) : there is a path from L1 to L2 along which X may not be

defined.

componentEntry(X ,F) : F() is the entry of Android component X . e.g. onCreate()

of an Activity or a Service component.

immediateCD(L1,L2) : program point L2 is immediately control dependent on

L1 in the same function.

directInvoke(F1,F2,L) : F1 invokes F2 at program point L

indirectInvoke(F1,F2) : F2 is the actual destination of F1() in event-

driven circumstances, e.g. (1) Thread.start() →

Runnable.run(); (2) Handler.sendMessage() → Han-

dler.handleMessage().

iccInvoke(F1,F2,L) : F1 invokes a function F2 for inter-component communi-

cation purpose at L. F2 should be APIs like startActiv-

ity(), startService().

Figure 4.3.: Datalog atoms for intent propagation and correlation.

90

/*invoke(F1,F2,L): F1 invokes F2 at program point L.*/

invoke(F1,F2,L) :- directInvoke(F1,F2,L)

invoke(F1,F2,L) :- iccInvoke(F1,F3,L) & actual(L,1,X) & “L1: X.setClass(...)”

& actual(L1,2,Y) & componentEntry(Y ,F2)

invoke(F1,F2,L) :- invoke(F1,F3,L) & indirectInvoke(F3,F2)

invoke(F1,F2,L) :- invoke(F1,F3,L) & invoke(F3,F2,L)

/*hasIntent(F,T ,L): F() has intent type T and the corresponding API call is at L.*/

hasIntent(F,T ,L) :- invoke(F ,A,L) & apiIntent(L,T)

hasIntent(F,T ,L1) :- hasIntent(F1,T ,L1) & invoke(F ,F1,L2)

/*controlDep(L1,L2): program point L2 is control dependent on L1.*/

controlDep(L1,L2) :- immediateCD(L1,L2)

controlDep(L1,L2) :- inFunction(F1,L1) & inFunction(F2,L2) & invoke(F1,F2,L3)

& controlDep(L1,L3)

/*defUse(L1,L2), useUse(L1,L2): data at L1 and L2 are data correlated.*/

defUse(L1,L2) :- def (L1,X) & use(L2,X) & hasDefFreePath(L1,L2,X)

defUse(L1,L2) :- invoke(F1,F2,L1) & actual(L1,M,X) & formal(F2,M,Y) & fu-

nEntry(F2,L3) & hasDefFreePath(L3,L2,Y) & use(L2,Y)

useUse(L1,L2) :- defUse(L3,L1) & defUse(L3,L2)

useUse(L2,L1) :- defUse(L3,L1) & defUse(L3,L2)

/*correlated(L1,L2): L1 and L2 are data/control correlated.*/

correlated(L1,L2) :- controlDep(L1,L2)

correlated(L1,L2) :- defUse(L1,L2)

correlated(L1,L2) :- useUse(L1,L2)

correlated(L1,L2) :- correlated(L1,L3) & correlated(L3,L2)

/*correlatedIntent(F,T1,L1,T2,L2): In function F , intent T1 at L1 is correlated to T2 at L2*/

correlatedIntent(F,T1,L1,T2,L2) :- hasIntent(F, T1, L1) & hasIntent(F, T2, L2) &

correlated(L1,L2)

Figure 4.4.: Datalog rules for intent propagation and correlations

91

// in method zjReceiver.onReceive() F1

Intent intent = new Intent("android.intent.action.RUN");

L1 intent.setClass(context, zjService.class Y);

L startService(intent); F3(X)

// in class zjService Y

public void onStart(Intent intent, int i) F2 { . . . }

Figure 4.5.: ICC call chain example in app GoldDream.

defined at L1 and used at L2. To generate the atom relation, we leverage the SSA form and

the points-to analysis. The analysis is conservative. If we are not sure X must be re-defined

along the path, we assume the path is definition free. The paths we are considering include

both intra- and inter-procedural paths.

Android apps are component based. Generally, there are four types of basic compo-

nents: Activity, Service, Broadcast Receiver and Content Provider. Activity component is

for a single UI screen. Service component is for long-running operations in the background

(without any UI). Broadcast receiver responds to system-wide broadcast announcements.

Content provider is used for application data management [83]. Inter-Component Commu-

nication (ICC) is used to deliver data between components, which is similar to traditional

function invocations. We have to model such communication as a function may transitively

invoke API functions with intent of interest through ICC. However, the calling convention

of ICC is so unique that the underlying WALA infrastructure cannot recognize ICC in-

vocations. Figure 4.5 shows an example from a real world app GoldDream. Inside the

zjReceiver.onReceive() function, there is an ICC call to the onStart() func-

tion of the zjService component. Observe that the invocation is performed by creat-

ing an Android Intent object1, which can be considered as a request that gets sent to

1Intent is a standard class in Android. We call it Android Intent in order to distinguish with the intents we
associate with API functions.

92

other components to perform certain actions. The target component is set by explicitly

calling setClass() of the Android Intent object. The request is sent by calling start-

Service() with the Android Intent object. The Android runtime properly forwards the

request to the onStart() function of the zjService component.

To capture such call relation, we introduce the componentEntry(X ,F) atom with X a

subclass of Service, Activity or BroadcastReceiver. The entry point F de-

notes onCreate(), onStart(), and onReceive(), which are also called lifecycle

methods by Android developers. We introduce atom iccInvoke(F1,F2,L) with F2 denoting

special ICC functions, such as startActivity(), startService() and send-

Broadcast(). The second inference rule of the invoke(F1, F2,L) relation describes how

we model ICC as a kind of function invocation. Let’s use the example in Figure 4.5 to

illustrate the rule. It allows us capture the call chain zjReceiver.onReceive()→

startService() → zjService. onStart(). Labels L , L1 , F1 , F3 , and Y in

Figure 4.5 correspond to those in the second invoke() rule.

Atom directInvoke(F1,F2,L) denotes regular function calls including virtual calls, lever-

aging WALA. Atom indirectInvoke(F1,F2) denotes another special kind of function invo-

cations in Android apps, namely, implicit calls in thread execution and event handling.

A typical indirect call is a thread-related invocation, e.g., the actual call destination of

Thread.start() is the run() method of the corresponding class. The function call

f.execute() → doInBackground() in Figure 4.1 (i.e., line 5 → line 11) is an

example for event handling indirect invocation. We detect these implicit calls through pre-

defined patterns.

Relation hasIntent(F,T ,L) denotes function F is tagged with an intent T initiated by the

API call at program point L. For example, in Figure 4.1, we can infer the following:

hasIntent (F = StartPageActivity.onClick(),

T = SendSms,

23 /*sm.sendTextMessage(...)*/) = TRUE.

Observe that the first hasIntent() rule tags the enclosing function of an API call. The

second rule propagates a tag from a callee to the caller. Note that a function may have

93

multiple intents. These intents may be of the same type (but initiated at different API call

locations).

The remaining relations and rules are for intent correlations. Relation correlated(L1,L2)

determines if two program points L1 and L2 are correlated. Correlation can be induced by

definition-use, use-use, and control dependence relations, described by relations defUse(),

useUse(), and controlDep(), respectively. The fourth correlated() rule suggests that the

relation is transitive.

The first rule of defUse(L1,L2) is standard. In our implementation, we leverage SSA

form to derive definition-use relation for local and global variables. We leverage points-

to relation to reason about definition-use relation for object fields. The second rule is

to capture definition-use relation by parameter passing, including those through Android

specific calling conventions. The basic idea is that we consider a formal argument Y used

inside the callee at L2 is defined at the call site L1 (in the caller) if it is not re-defined along

the path from the callee entry to the use site.

The relation useUse(L1,L2) denotes that there are uses at L1 and L2 coming from the

same definition point. For example, L1 and L2 could be the two uses of the same variable

in the two branches of a predicate. Considering use-use relation in the correlated() rela-

tion is the key difference from standard program dependence analysis that considers only

definition-use and control dependence relations.

Computation of controlDep(L1,L2) is standard except that it also models inter-procedural

control dependence. Particularly, all statements in a callee have control dependence with a

predicate in the caller that guards the call site.

Finally, the relation correlatedIntent(F,T1,L1,T2,L2) denotes if two intents T1 and T2 at

function F are correlated.

Example. Figure 4.6 shows a correlation analysis example in app Shanghai 1930. Con-

tentResolver.insert() at line 16 stores the sent text message into the mail box and

it hence has intent type SmsNotify. It is determined to be correlated to the SMS sending

operation with SendSms intent at line 8. According to the definition-use graph in Fig-

ure 4.6(b), line 16 is correlated with line 11 (both use cv defined at line 10) by the useUse()

94

1 // in class PaySmsActivity

2 void a (String v8, String v9, String v10) {

3 SmsManager sm = SmsManager.getDefault();

4 ArrayList al = SmsManager.divideMessage(v10);

5 Iterator<String> ite = al.iterator();

6 while (ite.hasNext()) {

7 String s = ite.next();

8 sm.sendTextMessage(v8,v9,s,null,null);

9 }

10 ContentValues cv = new ContentValues();

11 cv.put("address",v8);

12 cv.put("body",v10);

13 cv.put("type",2);

14 ContentResolver cr = getContentResolver();

15 Uri uri = Uri.parse("content://sms");

16 cr.insert(uri,cv);

17 }

(a) Code snippet.

L2

L4

L5

L6

L8

L10

L11

L12

L16

v10

al

ite

s

v8

v8

v10

cv

cv

cv

correlated

(b) Part of definition-use relations. Solid arrows labeled with variable names indicate
def-use relation.

Figure 4.6.: Intent correlation example in app Shanghai 1930.

95

rules. Line 11 is further correlated with line 8 because of variables v8, again by the

useUse() rules. Hence, we have correlatedIntent(PaySmsActivity.a(), SendSms,

8, SmsNotify, 16)=TRUE. Intuitively, the two intents are correlated because the same con-

tent is being sent over a short message and written to the mail box. Thus, the message send

is not stealthy.

4.3.2 UI Compatibility Check

After intents are propagated to top level functions, the next step is to check their com-

patibility with the text of the corresponding user interface artifacts.

Acquiring User Interface Text. Given a top level function, we need to first extract the

corresponding text. User interface components in an Android app are organized in a view

tree. A view is an object that renders the screen that the user can interact with. Views can

be organized as a tree to reflect the layout of interface. There are two ways to construct the

layout: (1) statically through an XML resource file; (2) dynamically by constructing the

view tree at runtime.

With the static layout construction, upon the creation of an activity, the corresponding

user interface is instantiated by associating the activity with the corresponding XML file

by calling setContentView([XML layout id]). The Android core renders the in-

terface accordingly. A UI object has a unique ID. The ID is often specified in the XML

file. Inside the app code, the handle to a UI object is acquired by calling findView-

ById([object id]). For example, the following text defines a button in the XML file.

Note that the button text is also specified.

1 <Button android:id="@+id/my_button"...

2 android:text="@string/my_button_text"/>

Its handle can be acquired as follows. Note that the lookup id matches with that in the

XML file.

1 Button btn = (Button)findViewById(R.id.my_button);

96

The event handler for an UI object is registered as a listener. For example, one can set

the listener class for the previous button by making the following call.

1 btn.setOnClickListener(new MyListener(...));

In this case, the onClick() method of the MyListener class becomes the top level

user interaction function associated with the button. Next we describe how we extract text

for different kinds of functions.

For a top level interactive function F (e.g. onClick()), AsDroid identifies the cor-

responding UI text as follows. It first identifies the registration point of the listener class

of F. From the point, AsDroid acquires the UI object handle, whose ID can be acquired

by finding the corresponding findViewById() function. The ID is then used to scan

the layout XML file to extract the corresponding text. AsDroid also extracts the text in

the parent layout. For example, the parent layout of a button may be a dialog. Important

information may be displayed in the dialog and the button may have only some simple text

such as “OK”. We currently cannot handle cases in which the text is dynamically generated.

We found such cases are relatively rare.

Some non-interactive top level functions also have associated UIs, for instance, the

lifecycle methods onCreate() and onStart() of activity components. These meth-

ods are invoked when the screen of an activity is first displayed. While no user interactions

are allowed when executing these methods, the displayed screen may have enough infor-

mation to indicate the expected behavior of these methods, such as loading data from a

remote server. Hence, for an activity lifecycle method, AsDroid extracts the text in the

XML layout file associated with the activity.

Text Analysis. Once we have the text, we build a dictionary that associates a type of intent

to a set of keywords through training. We use half of the apps from the benign sources2

as the training subjects, which account for about 28% of all the apps we study. During

evaluation, we use the dictionary generated from the 28% apps to scan over the entire

set of apps. Here, we assume the training apps are mostly benign. If an intent appears

2We collect apps from both benign and malicious sources as shown in Section 4.4.

97

Algorithm 3 Generating Keyword Cover Set.
train(S, F)

1: KWD=φ /*the keyword cover set*/

2: while F 6= φ do

3: sort S by keyword (or keyword pair) frequency

4: k=the top ranked keyword (or pair) in S

5: X= the functions in which k occurs

6: KWD=KWD∪k

7: F= F-X

8: S=S-{all the keywords (pairs) in X}

9: end while

together with some text in a benign case, then the intent and the text are compatible. We

use keywords to represent text, and build compatible keyword cover set for each intent. In

particular, For each intent type T of interest, we identify all the top level functions F that

have T annotated and collect their corresponding texts. We then use Stanford Parser [84] to

parse the text to keywords. We populate a universal set S to include all individual keywords

and keyword pairs that appear in these functions. We then use Algorithm 3 to identify

the smallest set of keywords (or pairs) that have the highest frequency and cover all the top

level functions tagged with T.

The algorithm is similar to the greedy set cover algorithm [85]. It picks the most fre-

quently occurring keyword k at a time and adds it to the keyword set. Then it removes

all the keywords that appear in the top level functions in which k occurs, as they can be

covered by k. It repeats until the set of functions are covered.

We consider keyword pairs are semantically more predictive. Hence, we first apply

the algorithm to keyword pairs and keep the pairs that can uniquely cover at least 10% of

functions. Then we apply the algorithm to singleton keywords on the remaining functions.

Figure 4.7 shows the generated keyword cover set for the Send-Sms intent. Observe

some keywords are semantically related to the intent but some are not, e.g. “OK” and

“Register”, which occur rarely but do uniquely cover some functions. Further inspection

shows that it is due to the malwares in the training pool. Hence, we also use human semantic

analysis to prune the keyword set, e.g. filtering out “OK” and “Register”. The keyword

98

50.0%

19.3%
11.6%

7.7%
3.8% 3.8% 3.8%

0%

20%

40%

60%

Send +
Sms

Invite +
Friend

Send OK Buy Text +
Number

Register

Figure 4.7.: The keyword cover set for the SendSms intent. The y-axis denotes the percent-
age of top level functions that can be uniquely covered by a keyword (pair).

set of HttpAccess is similarly constructed, containing keywords “Download”, “Login”,

“Load”, “Register”, and so on. The cover set of PhoneCall is much simpler, containing

only one keyword “Call”.

Once we get the keyword cover set, we further populate it with its synonyms, using

Chinese WordNet [86] to have the final dictionary.

Compatibility Check. The compatibility check is performed as follows.

• Given a top level function F with UI text S and an intent T, if S is incompatible with

T and all the intents correlated with T, it is considered a mismatch. Note that we

consider empty text is incompatible with any intent.

• If T is a SendSms intent and has a correlated SmsNotify intent. It is not a mismatch

regardless of the UI text.

• If T is HttpAccess, the technique checks if the corresponding UI text is compatible.

If not, it further checks if T is correlated to any UiOperation intent. If not, the intent

is consider stealthy. Intuitively, it suggests that even an HTTP access is not explicit

from the GUI text, if the data acquired through the HTTP connection are used in

99

Table 4.1.: Experiment results.

#App

HTTP SMS CALL INSTALL

#Intent #Rep #FP/#FN#Intent #Rep #FP/#FN #Intent #Rep #FP/#FN #Intent #Rep #FP/#FN #Intent #Rep #FP/#FN

(#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App)

Contagio 96 189(69) 136(64) 28/7(14/2) 90(57) 86(55) 0 4(4) 2(2) 0 4(2) 4(2) 0/7(0/6) 287(82) 228(77) 28/14(14/8)

Google Play 12 19(9) 12(7) 3/0(2/0) 6(5) 6(5) 2/0(1/0) 2(1) 0 0 0 0 0 27(10) 18(8) 5/0(3/0)

Wandoujia 74 166(39) 70(23) 23/5(10/1) 46(24) 13(10) 3/2(2/2) 8(5) 0 0 0 0 0 220(47) 83(28) 26/7(11/3)

Total 182 374(117) 218(94) 54/12(26/3) 142(86) 105(70) 5/2(3/2) 14(10) 2(2) 0 4(2) 4(2) 0/7(0/6) 534(139) 329(113) 59/21(28/11)

some UI component (e.g. fetching and then displaying advertisements from a remote

server), the HTTP access is not considered stealthy.

4.4 Evaluation

We implement a prototype called AsDroid (Anti-Stealth Droid). We transform the DEX

file of an app to a JAR file with dex2jar [87] and then use WALA [28] as the analysis engine.

Our implementation is mainly on top of WALA.

We have collected apps from three different sources. We aim to detect those with the

following stealthy behavior: SMS sends, phone calls, HTTP connections and component

installations. Hence, we only focus on those having the permissions for such behaviors.

Particularly, since almost all apps have the HTTP permission, we select those that have

at least one of the other three permissions. Note that despite we introduce six intents

in Section 4.3, SmsNotify and UiOperation do not describe stealthy behavior but rather

suppress false alarms. The 3 sources are the following.

⋄ Contagio Mini Dump [88]. It collects a large pool of (potential) malware reported

by users and existing security tools. These malicious apps may perform stealthy opera-

tions, leak user private information, or compromise the operating system like a rootkit. We

acquired 96 apps holding the needed permissions.

⋄ Google Play [89]. This is the official apps market holding a lot of Android games.

We checked the top 180 free game apps and only 12 of them satisfy our selection criteria.

100

⋄ Wandoujia [90]. This is a popular general Android app market in China. We have

checked the 1000 most popular game apps on the market and downloaded 74 of them with

the needed permissions.

The detection results are shown in Table 4.1. In the table, #App in the second column

denotes the number of tested apps from a specific source. #Intent is the number of API

invocations with one of the four kinds of potential stealthy intents. #Rep is the number

of intent points reported by AsDroid as stealthy. #FP is the number of false positives and

#FN is the number of false negatives. The corresponding #App in parentheses denotes the

number of apps in which these intents appear. Note that one app may have multiple intents.

The last three columns show the total numbers. #App in the last three columns is not the

simple sum of the #App in the corresponding preceding columns. For example, the number

of total reported apps is 77 for the Contagio source. It is not the sum of the reported

apps in the four categories as one app may be reported in multiple categories. We make the

following observations.

• AsDroid is able to detect a lot of stealthy behaviors in these apps. Totally, AsDroid

detects that 113 apps perform stealthy operations, with 85 true positives, i.e. having

at least one true stealthy API call. Note that there are some apps that do not have the

intents (i.e. API calls) of interest even though they hold the permissions. Since there

are no existing oracles to determine stealthy behavior, we identify true positives by

manually inspecting the results in two ways. For those API calls that can be reached

by testing, we determine their stealthiness by executing the apps. Many of the API

calls are difficult to reach without a complex sequence of user actions. Since we

lack automatic test generation support, we perform code inspection instead. AsDroid

detects a lot of stealthy behavior in the apps from Contagio, which is supposed

to be a source hosting (highly likely) malwares. Most of the detected stealthy SMS

sends and phone calls may cause unexpected charges. Most of the stealthy HTTP

accesses are to notify the remote servers the status of device or the app (e.g. a mobile

device becomes online). Some of them also leak critical user information.

101

• AsDroid produces some false positives (28 out of the 113 reported apps). They are

induced by the following reasons: (1) AsDroid cannot analyze dynamically gener-

ated text associated with a UI component; (2) The dictionary we use is incomplete;

(3) Some reported intents are along infeasible paths but AsDroid does not reason

about path feasibility. The detection outcome for individual apps is denoted by the

symbols on top of the bars and their colors in Figure 4.9. Also observe that most

false positives belong to the category of HTTP accesses. Some of them are due to

the incompleteness of our keyword dictionary. However most of them are essentially

HTTP accesses in advertisement libraries. These accesses often download adver-

tisement materials and store them to external files that are later read and displayed.

Ideally, they are not stealthy as the materials are displayed. However AsDroid cur-

rently cannot reason about correlations through external resources, leading to false

positives. Note that most existing static data flow analysis engines on Android have

the same limitation. It should be easy to have an additional post-processing phase to

suppress warnings from advertisement libraries.

• The number of false negatives is small (11 apps total). We manually inspect the apps

that are not reported by AsDroid to determine false negatives. In particular, we use

WALA to report all the API calls of interest and then we inspect them one by one

manually. There are 182−113=69 such apps. We found that AsDroid missed 11

malicious apps. Most of them are in the category of stealthy install. As such, the

detection rate of AsDroid is 85/(85+11)=88%. The main reason for false negatives

is that the current implementation cannot model some of the implicit call edges.

There are also cases that native libraries are used to perform stealthy behavior, which

is not handled by AsDroid. The false negative HTTP accesses mainly result from

the in-accuracy of the text analysis. While AsDroid extracted keywords such as

“download” and “login” that make the (stealthy) HTTP accesses compatible and

thus not being reported, these accesses doesn’t match the textual semantics.

102

39.43%

49.80%

9.56% 1.21%

onClick()

activity lifecycle methods

onReceive()

others

Figure 4.8.: Breakdown of the top level functions with intents. Activity lifecycle methods
include onCreate() and onStart() of an activity. onReceive() and the other
categories do not have associated UI.

• Stealthy HTTP connections are very common, although many of them may not be

as harmful as the other stealthy behaviors (please refer to our case study). SMS

sends are another dominant category of stealthy behaviors, which echoes the recent

studies [19, 76].

Comparison with FlowDroid. FlowDroid [35, 36] is a state-of-the-art open-source static

taint analysis for Android apps. We ran it on the 96 apps from Contagio. We use the

default taint sources (e.g. methods retrieving private information). For the taint sinks, we

only keep the SMS send and HTTP access methods. FlowDroid ran out of memory for 55

of the apps hence we compare the results for the remaining 41. FlowDroid reports 4 SMS

sends in 3 apps and 1 HTTP access in 1 app that have information leak. In contrast, in

the 41 apps, AsDroid reports 26 stealthy HTTP connections in 18 apps, including the one

reported by FlowDroid, with 1 false positive in 1 app and 7 false negatives in 2 apps. It also

reports 35 SMS sends in 21 apps, including 2 SMS sends reported by FlowDroid. For the

other 2 SMS sends (by FlowDroid), the UIs explicitly indicate the behavior. Hence they

are not stealthy although they do leak information. From the comparison, we clearly see

that FlowDroid and AsDroid focus on problems with different natures. All experiments are

performed on an Intel Core i7 3.4GHz machine with 12GB memory. The OS is Ubuntu

12.04.

103

@
@

@
/X

@
@

@
@

N
N

@
@

@
@

/N
X

@
X

@
@

/N
@

@
@

@
X

@
@

@
X

X
@

@
@

@
/N

X
@

/N
@

/N
@

@
@

/X
@

@
/X

@
/X

X

@
/X

/N
@

/X
X

@

X
@

@

0
2

0
0

4
0
0

6
0
0

8
0
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

Time (Second)

@
/X

@
@

@
@

/N
X

@
@

/X
@

@
X

@
@

@
@

@
@

@
@

@
/X

@
@

@
@

@
/N

@
X

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

0 5

1
0

1
5

2
0

2
5

3
0

Time (Second)

@

@
X

@

X
@

@
X

@
@

@
@

@
/X

@
@

@
@

/N
X

X
@

@
/X

@

0 2 4 6 8

1
0

1
2

Time (Second)

Figure 4.9.: Analysis time. The detection results are also annotated on top of each bar with
‘@’ denoting true positive(red), ‘X’ false positive(black) and ‘N’ false negative(yellow).
Since an app may have multiple intents, it may be annotated with multiple labels. The last
3 apps exceeded the max timeout 30 mins.

104

Figure 4.8 shows the breakdown of the top level functions that are attributed with in-

tents. There are totally 743 such functions. Observe that 39% of such functions are the

interactive onClick() function and almost 50% of them are activity lifecycle methods

that are not interactive but nonetheless have associated UI. About 10% of them are onRe-

ceive() of external events and 1.2% of other functions such as the timer handler function

TimerTask.run(). These functions are often not associated with any UI.

We present the analysis time for the 182 apps in Figure 4.9. Most apps (about 93%) can

be detected in 3 mins and a few in 13 mins. Three apps require more than 30 mins. Human

inspection disclosed that that they are very complex apps such that AsDroid consumes

exceptionally large amount of memory, which slows down the analysis significantly. We

plan to further look into this issue.

4.4.1 Case Studies

Next, we present two more cases.

iCalendar is a calendar app infected by malicious code that sends a SMS message sub-

scribing to a premium-rate service. The malicious operation is triggered by user interaction

in a stealthy way. The user clicks the app to change a background image and the app in-

creases a counter. When the counter gets to 5, a message is sent. Figure 4.10 shows a

simplified code snippet of the process.

Variable main represents the main interface layout. As soon as the app is launched, it

registers a click listener in onCreate(). When the user clicks the interface, showImg()

is invoked in onClick() to reset the background image. In the mean time, the app checks

the counter to see if sendSms() should be called to send a premium-rate SMS.

In our analysis, two intents: UiOperation and SendSms, are associated with L1 and L2

in Figure 4.10 respectively. The intents are propagated to the top level function onClick()

through the call graph. The UI component associated with the function is the background

image without any text, which does not imply the SendSms indent. The correlation anal-

ysis also determines that these two intents are not correlated. It is hence reported as a

105

1 // in class {iCalendar}

2 public void onCreate(Bundle bundle) {

3 main.setOnClickListener(this);

4 }

5 public void onClick(View view) {

6 showImg();

7 }

8 private void showImg() {

9 if(index == 5) {

10 sendSms();

11 }

12 main.setBackgroundDrawable(drawable1);

13 }

14 public void sendSms() {

15 smsmanager.sendTextMessage("106xxxx", null, "921X1", null,

null);

16 }

L1

L2

Figure 4.10.: Code example in app iCalendar.

mismatch. Note that taint analysis tools [1, 35, 36] cannot report the problem because the

data involved in the SMS send are hardcoded.

HitPP is a game app downloaded from Google Play. Figure 4.11 shows the code snippet

in which a stealthy HTTP access is made when the app is initialized. The initialization at

line 4 transitively starts a thread at line 14. The thread entry is at line 18. The thread starts

an HTTP connection at line 21 and then shuts it off right after at line 22. The app does

not receive or display any data from the remote server. We suspect the HTTP access is to

inform the remote server about the start of the app. Since there is no UI text associated with

the top level onCreate() method and there are no correlated intents, the HTTP access

106

1 public class HitPP extends Activity {

2 public void onCreate(Bundle bundle) {

3 // {initialization} ...

4 WiGame.init(this, "f11947a...", "Df6mBy...", true, true);

5 }

6 }

7 class WiGame {

8 public static void init(Context ctx, String s1, String s2,

boolean x, boolean y) {

9 b.a(ctx,s1);

10 }

11 }

12 class b {

13 public static void a(Context ctx, String str) {

14 (new b$1(str, ctx)).start();//→b$1.run() at line 18

15 }

16 }

17 class b$1 extends Thread {

18 public void run() {

19 String str = "http://d.wiXXX.com/was/r?u=" +

WiGame.getDeviceId();

20 HttpGet httpGet = new HttpGet(str); //HttpAccess

21 httpClient.execute(httpGet); //without a LHS variable

22 httpClient.getConnectionManager().shutdown();

23 }

24 }

Figure 4.11.: Code example in app HitPP.

107

is reported by AsDroid. This is a very typical kind of stealthy HTTP access reported by

AsDroid.

4.5 Limitations

AsDroid has the following limitations. (1) The current UI analysis is simply based on

textual keywords, which may be insufficient. It is possible that apps use images or ob-

fuscated texts (e.g. text containing keyword “send” but having no relation with sending a

message). AsDroid will have difficulty in catching the intention of the UI. We will study

applying more advanced text analysis or image analysis. (2) Currently, to avoid false pos-

itives, AsDroid relies on certain rules in detecting intent correlation and avoids reporting

some intents incompatible with UI if their correlated intents are compatible. This seems to

be working fine given that Android malwares are still in their early stage. In the future, if

an adversary has the prior knowledge of AsDroid, he could obfuscate a malicious app to

induce bogus correlations to avoid being reported. We envision a more sophisticated pro-

gram analysis component will be needed, which may leverage testing or symbolic analysis

(e.g. use symbolic analysis to determine if two intents are truely correlated). (3) AsDroid

currently cannot reason about correlations through external resources, leading to false pos-

itives. Note that most existing static data flow analysis engines on Android have the same

limitation. It could be mitigated by modeling external accesses. (4) Currently, AsDroid

does not support native code or reflection. (5) AsDroid misses some Inter-Component

Communication correlations. We could leverage Epicc [91] to get better coverage in our

future work.

4.6 Related Work

TaintDroid applies dynamic taint analysis to Android apps [1] to prevent information

leak. Gilbert et al. extended the technique to track implicit flows [92]. Hornyack et al.

developed AppFench to impose privacy control on Android applications [38]. Arzt et al.

investigated the limitations of using runtime monitoring for securing Android apps [93].

108

They used unintended SMS sending as an example. The essence of the technique is infor-

mation flow tracking. FlowDroid [35, 36] is a very recent static taint analysis tool. These

techniques cannot detect stealthy behavior as such operations may not leak information, as

evidenced by the comparison with FlowDroid in Section 4.4.

Enck et al. developed a simple static analysis [2] that can detect SMS sends with

hardcoded SMS numbers and phone calls, such as prefix “tel:” and substring “900”.

However, these patterns are very limited and not all such operations are malicious.

Elish et al. proposed to detect malicious Android apps [94] by determining the absence

of data dependence path between user input/action and a sensitive function. However,

dependence is not the key characteristic of stealthy behavior. In our experience, SMS sends

triggered by user inputs can be malicious. Furthermore, many benign HTTP accesses are

not triggered by any user action, e.g. an email app might connect to the server frequently

to check new emails in background.

DroidRanger developed by Zhou et al. employs both static and dynamic techniques to

detect malware [95], based on signatures derived from known malware such as premium-

rate numbers and content of SMS messages. Hence, Droid-Ranger has to maintain a signa-

ture database that may change significantly overtime. And it also has runtime overhead.

Some existing work tries to capture Android GUI errors [96] or improve privacy control

via GUI testing [97]. Gross et al. developed EXSYST [98] that uses search based testing to

improve GUI testing coverage. Mirzaei et al. applied symbolic execution to generate test

cases for Android apps [99, 100]. AsDroid could potentially leverage these techniques to

generate test cases for bug report validation.

Recently, Pandita et al. proposed WHYPER to analyze an app’s text description and

then determine if the app should be granted certain permissions [7]. Both WHYPER and

AsDroid leverage text analysis. However, they have different goals and AsDroid works by

analyzing both apps and UIs.

109

4.7 Summary

We propose AsDroid, a technique to detect stealthy malicious behavior in Android apps.

The key idea is to identify contradiction between program behavior and user interface text.

We associate intents to a set of API’s of interest. We then propagate these intents through

call graphs and eventually attribute them to top level functions that usually have associated

UIs. By checking the compatibility between the intents and the text of the UI artifacts, we

can detect stealthy operations. We test AsDroid on 182 apps that are potentially problematic

by looking at their permissions. AsDroid reports 113 apps that have stealthy behaviors,

with 28 false positives and 11 false negatives.

110

5 CONCLUSION

This dissertation focuses on the topics of static analysis for Android apps. We first ex-

amined accurately discovering more sensitive data sources in Android apps. While exist-

ing researches focused on sensitive data disclosure detection with predefined data sources

that are normally API functions, we proposed techniques to identify sensitive data sources

among the generic API functions which may not generate sensitive data in many cases.

Such generic API functions include reading data from user interface, files, network, etc.

We leveraged text analysis to discover the sensitiveness. Then we applied bi-directional

propagation to detect sensitive data disclosure issues. We also developed a technique to

detect stealthy behaviors combining with text analysis and bi-directional propagation.

Detecting Sensitive User Inputs Disclosures. User inputs are very common in Android

apps and many of them may contain sensitive information, e.g., credit card number, birth

date. Existing approaches of detecting sensitive data disclosures always focus on tracking

the data generated by certain specific API functions. Such API functions directly returns

sensitive data. The user input is a typical type of generic API functions that can return

either sensitive data or insensitive data, depending on the context. However, existing work

mostly neglect such data sources.

We develop SUPOR to detect the sensitiveness of the user inputs by inspecting the

statically defined attributes and correlated text labels of the input fields. We mimic as

real users to associate the input fields with correlated text labels and bind the discovered

sensitive user input with corresponding API invocations in the code for further analysis.

We evaluate our technique on a large number of real-world Android apps. The results show

that it can effectively and efficiently identify sensitive user inputs and then detect their

disclosures.

Detecting Even More Sensitive Data Disclosures. Besides the API functions for obtain-

ing user inputs, there are more other generic API functions that can read data from files,

111

network and other resources. Different with the user inputs that can be determined to be

sensitive or not by examining the context of the user interfaces, we cannot easily determine

the sensitiveness of those API functions by checking where they are used. If we ignore all

such APIs, we may miss a lot of real problems when detecting sensitive data disclosures.

But if we treat all such API functions as sensitive data sources, we can expect a lot of false

warnings.

We develop type system based technique to decide whether a variable storing the data

may hold sensitive information. We associate the variables with correlated text labels in the

apps, either from the user interface or from the code. The text labels are treated as the types

of the variables. Text analysis can then be applied to determine whether the associated text

labels indicate the sensitiveness of the corresponding data. In case that the sensitiveness of

a piece of data is discovered after the data falls into a sink point that discloses data to public

channels, we allow the types to be propagated bi-directionally. While traditional techniques

of sensitive data disclosure detection requires forward data flow paths from data sources to

sinks, our technique is able to handle the cases in which backward paths exist from where

we recognize the data sensitiveness to the sinks. We develop a prototype BIDTEXT and

evaluate it on 10,000 Android apps. The results show the effectiveness and efficiency of

our approach.

Detecting Stealthy Behaviors. Stealthy behaviors are the kind of behaviors that are ex-

ecuted without the users’ consent. For example, malware may send a short message to a

premium number in the background or make a phone call in the mid-night without any user

actions. This kind of malicious behaviors cannot be easily distinguished from the benign

ones because the benign ones perform the actions with the same API functions. Some exist-

ing techniques leverage the blacklist to identify malicious stealthy behaviors. For instance,

if an SMS sending API function sends a message to a blacklisted number, it is reported

as a stealthy behavior. But maintaining a blacklist is non-trivial and thus we need a more

general approach to detect such behaviors.

We model stealthy behavior as the program behavior that mismatches with the user in-

terface, which denotes the user expectation of program behavior. We assign an intent to

112

each API function that indicates a specific behavior and propagate it backwardly to top

level functions. A top level function may be a user interaction function with the behavior

it performs. Then we extract the corresponding text from the user interface and examine

whether the text information indicates the discovered program behaviors. Semantic mis-

match of the two indicates stealthy behaviors. We develop AsDroid and evaluate it on a

pool of Android apps that are potentially problematic. The results show that AsDroid is

able to detect stealthy behaviors with low false positives and false negatives.

REFERENCES

113

REFERENCES

[1] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10,
pages 393–407, Berkeley, CA, USA, 2010. USENIX Association.

[2] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study
of Android application security. In Proceedings of the 20th USENIX Conference on
Security Symposium, SEC’11, pages 315–330, Berkeley, CA, USA, 2011. USENIX
Association.

[3] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Stati-
cally vetting Android apps for component hijacking vulnerabilities. In Proceedings
of the 19th ACM SIGSAC Conference on Computer and Communications Security,
CCS’12, pages 229–240, New York, NY, USA, 2012. ACM.

[4] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks:
Automatically detecting potential privacy leaks in Android applications on a large
scale. In Proceedings of the 5th International Conference on Trust and Trustworthy
Computing, TRUST’12, pages 291–307, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pollution in An-
droid applications. In Proceedings of the 20th Annual Network & Distributed System
Security Symposium, NDSS’13, Reston, VA, USA, 2013. Internet Society.

[6] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: Automatic secu-
rity analysis of smartphone applications. In Proceedings of the 3rd ACM Conference
on Data and Application Security and Privacy, CODASPY’13, pages 209–220, New
York, NY, USA, 2013. ACM.

[7] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper:
Towards automating risk assessment of mobile applications. In Proceedings of the
22nd USENIX Conference on Security Symposium, SEC’13, pages 527–542, Berke-
ley, CA, USA, 2013. USENIX Association.

[8] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong
Chen. Autocog: Measuring the description-to-permission fidelity in Android ap-
plications. In Proceedings of the 21st ACM SIGSAC Conference on Computer and
Communications Security, CCS’14, pages 1354–1365, New York, NY, USA, 2014.
ACM.

[9] Kangjie Lu, Zhichun Li, Vasileios Kemerlis, Zhenyu Wu, Long Lu, Cong Zheng,
Zhiyun Qian, Wenke Lee, and Guofei Jiang. Checking more and alerting less: De-
tecting privacy leakages via enhanced data-flow analysis and peer voting. In Pro-
ceedings of the 22nd Annual Network & Distributed System Security Symposium,
NDSS’15, Reston, VA, USA, 2015. Internet Society.

114

[10] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engi-
neering of graphical user interfaces for testing. In Proceedings of the 10th Working
Conference on Reverse Engineering, WCRE’03, pages 260–269, Washington, DC,
USA, 2003. IEEE Computer Society.

[11] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics
– Volume 1, ACL’03, pages 423–430, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[12] The Stanford parser for natural language processing, 1999.
http://nlp.stanford.edu/.

[13] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. The MIT
Press, 1998.

[14] George A. Miller. Wordnet: A lexical database for English. Communications of the
ACM, 38(11):39–41, November 1995.

[15] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking
app behavior against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, ICSE’14, pages 1025–1035, New York, NY,
USA, 2014. ACM.

[16] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[17] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing
with compositional vector grammars. In Proceedings of the 51st Annual Meeting on
Association for Computational Linguistics – Volume 1, ACL’13, Stroudsburg, PA,
USA, 2013. Association for Computational Linguistics.

[18] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
Riskranker: Scalable and accurate zero-day Android malware detection. In Pro-
ceedings of the 10th International Conference on Mobile Systems, Applications, and
Services, MobiSys’12, pages 281–294, New York, NY, USA, 2012. ACM.

[19] Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization and
evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP’12, pages 95–109, Washington, DC, USA, 2012. IEEE Computer Society.

[20] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. DREBIN: Effective and explainable detection of Android malware in your
pocket. In Proceedings of the 21st Annual Network & Distributed System Security
Symposium, NDSS’14, Reston, VA, USA, 2014. Internet Society.

[21] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using de-
pendence graphs. In Proceedings of the 9th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI’88, pages 35–46, New York, NY,
USA, 1988. ACM.

[22] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Notice, 23(7):35–46, June 1988.

http://nlp.stanford.edu/

115

[23] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and Systems,
12(1):26–60, January 1990.

[24] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Notice, 39(4):229–243, April 2004.

[25] Princeton University. Wordnet.
http://wordnet.princeton.edu.

[26] Android-ApkTool: A tool for reverse engineering Android apk file.
https://code.google.com/p/android-apktool.

[27] Baksmali: A disassembler for Android’s dex format.
https://code.google.com/p/smali.

[28] IBM T.J. Watson Research Center. Wala: T.J. Watson libraries for analysis.
http://wala.sourceforge.net.

[29] Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Im-
proving word representations via global context and multiple word prototypes. In
Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Long Papers – Volume 1, ACL’12, pages 873–882, Stroudsburg, PA, USA,
2012. Association for Computational Linguistics.

[30] Android dashboards.
https://developer.android.com/about/dashboards/index.
html. Accessed: 20 Feb 2015.

[31] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS: De-
tecting privacy leaks in iOS applications. In Proceedings of the 18th Annual Network
& Distributed System Security Symposium, NDSS’11, Reston, VA, USA, 2011. In-
ternet Society.

[32] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of
capability leaks in stock Android smartphones. In Proceedings of the 19th Annual
Network & Distributed System Security Symposium, NDSS’12, Reston, VA, USA,
2012. Internet Society.

[33] Jin Han, Qiang Yan, Debin Gao, Jianying Zhou, and Robert Deng. Comparing
mobile privacy protection through cross-platform applications. In Proceedings of the
20th Annual Network & Distributed System Security Symposium, NDSS’13, Reston,
VA, USA, 2013. Internet Society.

[34] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.
Appintent: Analyzing sensitive data transmission in Android for privacy leakage
detection. In Proceedings of the 20th ACM SIGSAC conference on Computer and
communications security, CCS’13, pages 1043–1054, New York, NY, USA, 2013.
ACM.

[35] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI’14, pages 259–269, New York,
NY, USA, 2014. ACM.

http://wordnet.princeton.edu
https://code.google.com/p/android-apktool
https://code.google.com/p/smali
http://wala.sourceforge.net
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

116

[36] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. SIGPLAN Notices, 49(6):259–269, June 2014.

[37] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach
for classifying and categorizing Android sources and sinks. In Proceedings of the
21st Annual Network & Distributed System Security Symposium, NDSS’14, Reston,
VA, USA, 2014. Internet Society.

[38] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These aren’t the droids you’re looking for: Retrofitting Android to protect data
from imperious applications. In Proceedings of the 18th ACM SIGSAC Conference
on Computer and Communications Security, CCS’11, pages 639–652, New York,
NY, USA, 2011. ACM.

[39] Adwait Nadkarni and William Enck. Preventing accidental data disclosure in mod-
ern operating systems. In Proceedings of the 20th ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, pages 1029–1042, New York,
NY, USA, 2013. ACM.

[40] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid:
Detecting stealthy behaviors in Android applications by user interface and program
behavior contradiction. In Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE’14, pages 1036–1046, New York, NY, USA, 2014. ACM.

[41] Jose Meseguer, Ralf Sasse, Helen J. Wang, and Yi-Min Wang. A systematic ap-
proach to uncover security flaws in GUI logic. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy, SP’07, pages 71–85, Washington, DC, USA,
2007. IEEE Computer Society.

[42] Collin Mulliner, William Robertson, and Engin Kirda. Hidden gems: Automated
discovery of access control vulnerabilities in graphical user interfaces. In Proceed-
ings of the 2014 IEEE Symposium on Security and Privacy, SP’14, pages 149–162,
Washington, DC, USA, 2014. IEEE Computer Society.

[43] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. Uipicker: User-input privacy identification in mobile applications. In Pro-
ceedings of the 24th USENIX Conference on Security Symposium, SEC’15, pages
993–1008, Berkeley, CA, USA, 2015. USENIX Association.

[44] Christof Lutteroth. Automated reverse engineering of hard-coded GUI layouts. In
Proceedings of the 9th Conference on Australasian User Interface – Volume 76,
AUIC’08, pages 65–73, Darlinghurst, Australia, Australia, 2008. Australian Com-
puter Society, Inc.

[45] João Carlos Silva, Carlos Silva, Rui D. Gonçalo, João Saraiva, and José Creissac
Campos. The GUISurfer tool: Towards a language independent approach to reverse
engineering GUI code. In Proceedings of the 2nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS’10, pages 181–186, New York,
NY, USA, 2010. ACM.

117

[46] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Model-
driven reverse engineering of legacy graphical user interfaces. In Proceedings of
the 25th IEEE/ACM International Conference on Automated Software Engineering,
ASE’10, pages 147–150, New York, NY, USA, 2010. ACM.

[47] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Model-
driven reverse engineering of legacy graphical user interfaces. Automated Software
Engineering, 21(2):147–186, April 2014.

[48] OWASP. Information leakage.
https://www.owasp.org/index.php/Information_Leakage.

[49] MITRE. CWE-200: Information exposure.
https://cwe.mitre.org/data/definitions/200.html.

[50] FortiGuard Center. Information disclosure vulnerability in OpenSSL (Heartbleed).
http://www.fortiguard.com/advisory/2014-04-08-
information-disclosure-vulnerability-in-openssl.

[51] US-CERT. OpenSSL ‘Heartbleed’ vulnerability (CVE-2014-0160).
https://www.us-cert.gov/ncas/alerts/TA14-098A.

[52] Gartner. Gartner says smartphone sales surpassed one billion units in 2014.
http://www.gartner.com/newsroom/id/2996817.

[53] Search Engine Watch. Mobile now exceeds PC: The biggest shift since the Internet
began.
https://searchenginewatch.com/sew/opinion/2353616/
mobile-now-exceeds-pc-the-biggest-shift-since-the-
internet-began.

[54] Collin Mulliner. Privacy leaks in mobile phone internet access. In Proceedings
of the 14th International Conference on Intelligence in Next Generation Networks,
ICIN’10, pages 1–6. IEEE, October 2010.

[55] Ning Xia, Han Hee Song, Yong Liao, Marios Iliofotou, Antonio Nucci, Zhi-Li
Zhang, and Aleksandar Kuzmanovic. Mosaic: Quantifying privacy leakage in mo-
bile networks. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM’13, pages 279–290, New York, NY, USA, 2013. ACM.

[56] Ning Xia, Han Hee Song, Yong Liao, Marios Iliofotou, Antonio Nucci, Zhi-Li
Zhang, and Aleksandar Kuzmanovic. Mosaic: Quantifying privacy leakage in mo-
bile networks. ACM SIGCOMM Computer Communication Review, 43(4):279–290,
August 2013.

[57] Jinyung Kim, Yongho Yoon, and Kwangkeun Yi. ScanDal: Static analyzer for de-
tecting privacy leaks in Android applications. In Proceedings of 2012 Mobile Secu-
rity Technologies, MoST’12, 2012.

[58] Muhammad Haris, Hamed Haddadi, and Pan Hui. Privacy leakage in mobile
computing: Tools, methods, and characteristics. Computing Research Repository,
abs/1410.4978, 2014.

https://www.owasp.org/index.php/Information_Leakage
https://cwe.mitre.org/data/definitions/200.html
http://www.fortiguard.com/advisory/2014-04-08-information-disclosure-vulnerability-in-openssl
http://www.fortiguard.com/advisory/2014-04-08-information-disclosure-vulnerability-in-openssl
https://www.us-cert.gov/ncas/alerts/TA14-098A
http://www.gartner.com/newsroom/id/2996817
https://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-biggest-shift-since-the-internet-began
https://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-biggest-shift-since-the-internet-began
https://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-biggest-shift-since-the-internet-began

118

[59] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. Supor: Precise and scalable sensitive user input detec-
tion for Android apps. In Proceedings of the 24th USENIX Conference on Security
Symposium, SEC’15, pages 977–992, Berkeley, CA, USA, 2015. USENIX Associa-
tion.

[60] Buycott.
http://buycott.com/.

[61] Michael Mahemoff. “Offline”: What does it mean and why should I care?
http://www.html5rocks.com/en/tutorials/offline/whats-
offline/.

[62] Nicholas C. Zakas. Towards more secure client-side data storage.
https://www.nczonline.net/blog/2010/04/13/towards-more-
secure-client-side-data-storage/.

[63] Universal dependencies.
http://universaldependencies.github.io/docs/.

[64] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilhamy, Nguyen Nguyenz,
and Martin Rinard. Information-flow analysis of Android applications in DroidSafe.
In Proceedings of the 22nd Annual Network & Distributed System Security Sympo-
sium, NDSS’15, Reston, VA, USA, 2015. Internet Society.

[65] Wei Huang, Yao Dong, and Ana Milanova. Type-based taint analysis for Java web
applications. In Proceedings of the 17th International Conference on Fundamental
Approaches to Software Engineering – Volume 8411, FASE’14, pages 140–154, New
York, NY, USA, 2014. Springer-Verlag New York, Inc.

[66] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise taint
analysis for Android. In Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ISSTA’15, pages 106–117, New York, NY, USA, 2015.
ACM.

[67] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop
Han, Paul Vines, and Edward X. Wu. Collaborative verification of information flow
for a high-assurance app store. In Proceedings of the 21st ACM SIGSAC Conference
on Computer and Communications Security, CCS’14, pages 1092–1104, New York,
NY, USA, 2014. ACM.

[68] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment: Bugs or
bad comments?*/. In Proceedings of 21st ACM SIGOPS Symposium on Operating
Systems Principles, SOSP’07, pages 145–158, New York, NY, USA, 2007. ACM.

[69] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. acomment: Mining annotations
from comments and code to detect interrupt related concurrency bugs. In Proceed-
ings of the 33rd International Conference on Software Engineering, ICSE’11, pages
11–20, New York, NY, USA, 2011. ACM.

[70] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tcomment: Testing
Javadoc comments to detect comment-code inconsistencies. In Proceedings of the
5th IEEE International Conference on Software Testing, Verification and Validation,
ICST’12, pages 260–269, Washington, DC, USA, 2012. IEEE Computer Society.

http://buycott.com/
http://www.html5rocks.com/en/tutorials/offline/whats-offline/
http://www.html5rocks.com/en/tutorials/offline/whats-offline/
https://www.nczonline.net/blog/2010/04/13/towards-more-secure-client-side-data-storage/
https://www.nczonline.net/blog/2010/04/13/towards-more-secure-client-side-data-storage/
http://universaldependencies.github.io/docs/

119

[71] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Parad-
kar. Inferring method specifications from natural language API descriptions. In Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE’12,
pages 815–825, Piscataway, NJ, USA, 2012. IEEE Press.

[72] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. Automatic model generation from documentation for Java API func-
tions. In Proceedings of the 38th International Conference on Software Engineering,
ICSE’16, pages 380–391, New York, NY, USA, 2016. ACM.

[73] Gartner. Gartner says worldwide sales of mobile phones declined 3 percent in third
quarter of 2012; smartphone sales increased 47 percent.
http://www.gartner.com/it/page.jsp?id=2237315.

[74] Juniper Networks. Juniper mobile security report 2011 – Unprecedented mobile
threat growth.
http://forums.juniper.net/t5/Security-Mobility-Now/
Juniper-Mobile-Security-Report-2011-Unprecedented-
Mobile-Threat/ba-p/129529.

[75] TrendLabs. 3Q 2012 security roundup – Android under siege: Popularity comes at
a price.
http://www.trendmicro.com/us/security-intelligence/.

[76] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner.
A survey of mobile malware in the wild. In Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM’11, pages 3–14,
New York, NY, USA, 2011. ACM.

[77] Denis Maslennikov. IT threat evolution: Q1 2013.
http://www.securelist.com/en/analysis/204792292/.

[78] Michael Becher, Felix C. Freiling, Johannes Hoffmann, Thorsten Holz, Sebastian
Uellenbeck, and Christopher Wolf. Mobile security catching up? Revealing the
nuts and bolts of the security of mobile devices. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP’11, pages 96–111, Washington, DC, USA,
2011. IEEE Computer Society.

[79] Paul Gosling. Trojans & spyware: An electronic achilles. Network Security,
2005(3):17–18, March 2005.

[80] Money-stealing apps are hosting in the mobile devices.
http://finance.sina.com.cn/money/lczx/20120410/
070311783396.shtml.

[81] Google. Android 4.2 compatibility definition.
http://source.android.com/compatibility/4.2/android-4.
2-cdd.pdf.

[82] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Pearson Education, Inc., 2006.

[83] Google. Android developer guide.
http://developer.android.com/guide/.

http://www.gartner.com/it/page.jsp?id=2237315
http://forums.juniper.net/t5/Security-Mobility-Now/Juniper-Mobile-Security-Report-2011-Unprecedented-Mobile-Threat/ba-p/129529
http://forums.juniper.net/t5/Security-Mobility-Now/Juniper-Mobile-Security-Report-2011-Unprecedented-Mobile-Threat/ba-p/129529
http://forums.juniper.net/t5/Security-Mobility-Now/Juniper-Mobile-Security-Report-2011-Unprecedented-Mobile-Threat/ba-p/129529
http://www.trendmicro.com/us/security-intelligence/
http://www.securelist.com/en/analysis/204792292/
http://finance.sina.com.cn/money/lczx/20120410/070311783396.shtml
http://finance.sina.com.cn/money/lczx/20120410/070311783396.shtml
http://source.android.com/compatibility/4.2/android-4.2-cdd.pdf
http://source.android.com/compatibility/4.2/android-4.2-cdd.pdf
http://developer.android.com/guide/

120

[84] Roger Levy and Christopher Manning. Is it harder to parse Chinese, or the Chinese
treebank? In Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics – Volume 1, ACL’03, pages 439–446, Stroudsburg, PA, USA,
2003. Association for Computational Linguistics.

[85] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[86] National Taiwan University. Chinese wordnet.
http://lope.linguistics.ntu.edu.tw/cwm/.

[87] pxb1988. dex2jar: Tools to work with Android .dex and Java .class files.
http://code.google.com/p/dex2jar/.

[88] Contagio mobile malware mini dump.
http://contagiominidump.blogspot.com/.

[89] Google play market.
https://play.google.com/store/apps/.

[90] Wandoujia.
http://www.wandoujia.com/apps/.

[91] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communication map-
ping in Android with epicc: An essential step towards holistic security analysis.
In Proceedings of the 22nd USENIX Conference on Security Symposium, SEC’13,
pages 543–558, Berkeley, CA, USA, 2013. USENIX Association.

[92] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. Vision: Au-
tomated security validation of mobile apps at app markets. In Proceedings of the
Second International Workshop on Mobile Cloud Computing and Services, MCS’11,
pages 21–26, New York, NY, USA, 2011. ACM.

[93] Steven Arzt, Kevin Falzon, Andreas Follner, Siegfried Rasthofer, Eric Bodden, and
Volker Stolz. How useful are existing monitoring languages for securing Android
apps? In ATPS, volume P-215 of GI Lecture Notes in Informatics, pages 107–122.
Gesellschaft für Informatik, 2013.

[94] Karim Elish, Danfeng (Daphne) Yao, and Barbara G. Ryder. User-centric depen-
dence analysis for identifying malicious mobile apps. In Proceedings of 2012 Mobile
Security Technologies, MoST’12, 2012.

[95] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets. In Proceedings
of the 19th Annual Network & Distributed System Security Symposium, NDSS’12,
Reston, VA, USA, 2012. Internet Society.

[96] Sai Zhang, Hao Lü, and Michael D. Ernst. Finding errors in multithreaded GUI ap-
plications. In Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ISSTA’12, pages 243–253, New York, NY, USA, 2012. ACM.

[97] Antti Jääskeläinen. Design, Implementation and Use of a Test Model Library for
GUI Testing of Smartphone Applications. Doctoral dissertation, Tampere University
of Technology, Tampere, Finland, January 2011.

http://lope.linguistics.ntu.edu.tw/cwm/
http://code.google.com/p/dex2jar/
http://contagiominidump.blogspot.com/
https://play.google.com/store/apps/
http://www.wandoujia.com/apps/

121

[98] Florian Gross, Gordon Fraser, and Andreas Zeller. Exsyst: Search-based GUI test-
ing. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 1423–1426, Piscataway, NJ, USA, 2012. IEEE Press.

[99] Nariman Mirzaei, Sam Malek, and Riyadh Mahmood Corina S. Păsăreanu,
Naeem Esfahani. Testing Android apps through symbolic execution. In Proceedings
of the 2012 Java Pathfinder Workshop, JPF’12, New York, NY, USA, 2012. ACM.

[100] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, and Riyadh
Mahmood. Testing Android apps through symbolic execution. ACM SIGSOFT Soft-
ware Engineering Notes, 37(6):1–5, November 2012.

VITA

122

VITA

Jianjun Huang was born in Shehong, Sichuan Province, China, in 1986. He received

the B.E. degree in information management and information system, and the M.S. degree

in systems theory from the Renmin University of China in 2009 and 2012, respectively.

He attended Purdue University from 2012 through 2017, studying program analysis with

Professor Xiangyu Zhang. He received his Ph.D. degree in computer science in 2017.

After graduation from Purdue University, he joined the Renmin University of China as an

assistant professor.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Thesis Statement
	Contributions
	Dissertation Organization

	SUPOR: PRECISE AND SCALABLE SENSITIVE USER INPUT DETECTION FOR ANDROID APPLICATIONS
	Introduction
	Background and Motivation Example
	Necessary Support for Static Sensitive User Input Identification
	Android UI Rendering
	UI Sensitiveness Analysis
	Natural Language Processing

	Design of SUPOR
	Threat Model
	Overview
	Layout Analysis
	UI Sensitiveness Analysis
	Variable Binding
	Keyword Dataset Construction

	Implementation
	Evaluations and Experiments
	Evaluation Setup
	Performance Evaluation
	Effectiveness of UI Sensitiveness Analysis
	Accuracy of Detecting Sensitive User Input Disclosures
	Case Studies

	Discussion
	Related Work
	Summary

	BIDTEXT: DETECTING SENSITIVE DATA DISCLOSURE VIA BI-DIRECTIONAL TEXT CORRELATION ANALYSIS
	Introduction
	Motivating Example
	Design
	Language Abstraction
	Type System and Bi-directional Propagation
	Practical Enhancements
	Disclosure Analysis

	Implementation
	Evaluation
	Pilot Study
	Unification vs. Bi-directional Propagation
	Large Scale Evaluation
	Discussion

	Related Work
	Summary

	ASDROID: DETECTING STEALTHY BEHAVIORS IN ANDROID APPLICATIONS BY USER INTERFACE AND PROGRAM BEHAVIOR CONTRADICTION
	Introduction
	Motivating Example
	Design
	Intent Propagation
	UI Compatibility Check

	Evaluation
	Case Studies

	Limitations
	Related Work
	Summary

	CONCLUSION
	REFERENCES
	VITA

